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Abstract consists in the estimation of the parameters of those mod-
els. Non-central cameras do not have, in general, paramet-
Generic imaging models can be used to represent anyric models. A recent result, however, derived an analytical
camera. These models are specially suited for non—centralmodel for the forward projection of a non-central system
cameras for which closed-form models do not exist. Cur- made up of a perspective camera and a rotationally sym-
rent models are discrete and define a mapping between eactmetric conic mirror [[]. For the special case of a spherical
pixel in the image and a straight line D space. Due to ~ mirror they also derived the back-projection equatiofs [
difficulties in the calibration procedure and model complex In this article, we study the calibration of generic cam-
ity these methods have not been used in practice. The focugra models. Calibration of a generic camera model was first
of our work was to relax these drawbacks. In this paper we discussed by Grossberg and Nay@r{]. In these articles,
modify the general imaging model using radial basis func- a non-parametric discrete imaging model was defined, con-
tions to interpolate image coordinates aBé lines allow- sisting in associating projecting rays3i space with pix-
ing both an increase in resolution (due to their continuous els in the image. To each pixel, a set of parameters called
nature) and a more compact representation. Using this newraxel is associated. The set of alixels (representing all
variation of the general imaging model we also develop a pixels) constitutes the complete generic imaging model. A
new linear calibration procedure. In this process itis only raxelis a set of parameters including image pixel coordi-
required to match on8D point to each image pixel. Also nates, the coordinates of the associated ray in the world (po
it is not required the calibration of every image pixel. As sjtion and direction) and radiometric parameters.

a result the complexity of the procedure is significantly de- Grossberg and Nayar also propose a method for estimat-
creased. ing the parameters of the general imaging model. Their ap-
proach requires the acquisition of, at least, two images of
. a calibration object with known structure and also requires
1. Introduction the knowledge of the object motion between the images.

Most cameras can be modeled by a perspective projec- Sturm and Ramalingan f] and Ramalinganet al. [16]
tion, which implies that all projecting rays intersect ates ~ Proposed a calibration method based on the non-parametric
gle point P]. These cameras where all projecting rays in- imaging model, suggested by Grossberg and Nayar. How-
tersect at a single point are usually called central cameras€Ver, they excluded from their model the radiometric enti-
However, in the last few years, cameras whose projectingties of theraxel. Their method assumes that the camera is
rays do not satisfy the constraint of intersecting at a singl fully described by the coordinates of rays and the mapping
effective viewpoint started to be used, due essentiallpgo t between rays and pixels.
large fields of view that can be obtained. These cameras Instead of using two images, Sturm and Ramalingam
are called non-central and in many cases are obtained bydeveloped a method that requires three images of the cal-
combining a perspective camera with a curved mirror—the ibration object, acquired from arbitrary and unknown view-
catadioptric camera$| 1, 20, 10]. They are used in several ing positions. If three points of the calibration object are
applications ranging from robotics to visualization. Cen- seen for the same pixel, the collinearity constraint allows
tral cameras have parametric models and their calibrationthe computation of the motion between the images of the



calibration object and, as a result, it allows the estinmatio LetU € R™*™ andV < R**! and the equation
of the direction of the ray i3 D space.

In [17], a minimal solution for the generic imaging
model was proposed based on their previous wdrid. . ] . )
They showed that the minimal solution is more robust to WhereX & R"Xl_ is the equation unknown. Itis possible to
noise when compared to the non-minimal solution. rewrite the previous equation as

All the methods mentioned above are discrete and non- @
parametric, using mapping arraysXelg to calibrate the
imaging model. Image pixels have associated a set of pa-

. ) . where ® is the Kronecker product of U and V, with
rameters that are independent from their neighbors. There—(V®U) c R™*nl anduvec (X) is ani-vector formed

uxv?l =c (1)

(V& U)wvee(X) =vec(C)

fore, performing a complete camera calibration requirés se
ting the mapping parameters for every pixel.

by stacking the columns &.

However, most of the useful non—central cameras have,2.2.Pliicker coordinates

in general, a pixel-ray relations that vary smoothly along

the image. That is the case for non-central catadioptric sys

tems with quadric mirrorsH, 20, 1], or linear cameras
[13, 8, 22, 23].
Our goal in this work is to relax the complexity of the

general imaging model and calibration process using the as
sumption that the parameters of the pixel-ray relationship
vary smoothly. This assumption is used to define a para-
metric representation for the general imaging model. As a
result the number of unknown parameters can be decreased.
In addition the number of parameters is independent from
the image resolution. Using this representation of the gen-

eral imaging model, a new method for its calibration is de-

scribed. This method reduces the complexity of the calibra-
tion process. The calibration of the imaging model used in

[6] and [L9] requires at least two points in the world, for

the same image point. We develop a calibration procedure

that only needs one world point for an image point. As in
[19], only geometric entities of general imaging model are
considered.

2. Notation and Background
2.1. Notation

Matrices are represented as bold capital lettexg A €
R™ ™ n rows andm columns). Vectors are represented as
bold small letters€.g a € R™, n elements). By default, a
vector is considered a column. Small lettezy(«) repre-
sent one dimensional elements. By default, itiecolumn
vector of A is specified ag;. Thejth element of a vector
a is written asa;. The element ofA in the line: and col-
umnj is represented ag_;. Regular capital lettere(g A)
indicate one dimensional constants.

Projective space is represented?s (in Euclideann-
space). A pointx in P" can be written in homoge-
neous coordinates iR"*! asx = (xg,71,72,...,2,)

Pluckercoordinates are a special caséashssmanrco-
ordinates [4]. A Grassmanmanifold is the set of: di-
mensional subspaces, imadimensional vector space, and
it is denoted ad*R”. Pliickercoordinates can be obtained
as a result of the application of an representation of the ex-

terior product to four dimensional vectats\ y. The result
of this operation lies in a six dimension vector spae
that can represent lines 7.

Consider two points in the worldk(andw in P3) rep-
resented in homogeneous coordindids Using Pliicker
coordinates, we can represeria line, incident with both
points, as

IR = x Aw = (lo1, loz, lo3, l23, 131, l12) € A*R* C RS
D T
(3)
with l” = T;wj; — T Wy, baSiSeij = e Nej (ei areR*
basis) andl andm are, respectively, the direction and the
moment of the line.

Although all elements of the four dimensional exterior
product,A’R?, belong taR%, not all elements oR° repre-
sent lines iBD space. It can be shown that, Equati@hié
the result of a four dimensional space exterior product (and
therefore it is a line irBD space), if and only if it belongs
to theKlein quadric

(4)

One of the most important properties BRicker coor-
dinates is its ability to compute incidence relation of §ine
and points, in the world. Using the direction and moment
vectors, a poinp € P? is incident with a lind € A2R* if

pl, -I

—_————
Q(p)

Q(LY) = lpilog + lo2lz1 + lozliz = (d,m) =0

®)

and we can recover non-homogeneous coordinates with

x' = (x1/x0,22/T0, ..., Tn/T0).
We useR after a vector or matrix to denote that it is
represented up to a scale factor.

wherep € R? (non—-homogeneous representatida), is a
matrix that linearizes the exterior productiag b =axb
andI is a3 x 3 identity matrix.



2.3. Interpolation

Suppose that we want to estimate an unknown func-
tion, f : RP? — R, from a set of scattered data points
X = {x;} ¢ RP (with D a natural number) angt =
{y:}, where the set{x;,y;} forms a training data set
{yi=f(xi)}

Interpolation requires the computation of an interpolat-
ing function,s : RP — R, that satisfies

s(xi) = f(xi), Vi (6)

Radial basis functiondRBF) [3, 21, 15, 18] can be
used to solve this problem. For a detof training points

Figure 1: General imaging model with parametric model-

{x1,....xp}, the RBF interpolant function has the form ., . "o esants the individual mapping between pixels
P in P2 and the line space ifi? (that represents geometric pa-
s(x) =ag+alx+ Z wid (||x — x4||) ) rameters of the raxels). Our assumption is that this mapping
= is smooth and that it can be represented by a vector-valued

functionf (x) : P? — £3. We callc; control points
where||.|| is the2—normvector ], ¢ : R, — R is the

radial basis functioranda, € R”. ag, a, andw; are the
interpolant unknowns. ) _ _ )

There are two types of kernel functions that can be Intheir model, a complete general imaging model is rep-
used as the RBF interpolant. One type of kernel functions 'éSeénted by a non-parametric discrete arrayastls that
does not have shape parameters, bkim—plate splines ~ contains all possible pixels in an image. This means that
¢ (r) = r2log (r), or ¢ (r) = r2. The other type of ker- the pixel-line mappings are reguwed for all pixels. Inde-
nel functions does have shape parameters, suchams-  Pendently of the image resolution or of the smoothness on
sian functions¢ (r) = exp (—B%r?), andmulti—-quadrics t_he variation of the parameters, that correspond t_oBﬂBe

lines associated to neighboring pixels. If we consider only
the geometric entities in Grossberg and Nayar’'s model, each
raxel contains at least seven parameters. Thus, for each
pixel, there are seven unknown parameters to be estimated.
For an image with sizé&V x M, there ar&’ N M parameters
to be estimated. Our target in this section is to reduce the
number of parameters to be estimated.

with ¢ (r) = (8% +r?) 1/2 whereg is the shape parameter.
The interpolation is obtained by means of the estimation
of the unknown parameters of the interpolant (ao, ay)
andw = (w1, ...,wp) of Equation {). The interpolating
functions (x) hasP+D+1 degrees of freedom and the data
setsX andy only yield P equations. For the estimation of
the unknowns in EquatiorY), additional constraints have to
be used. Since function is conditionally positive definite Our assumption is that the pixel-line mapping can be
[21] the following equations are verified, represented by a smoothly varying vector-valued function
f : P2 — £3, that maps a point in the image plane to a line
in 3D space. This assumption can significantly decrease the
wir® =0 number of model unknowns and also filter out some error
D due to noise.
_ (8)
[21, 1] wherexz(.j) is theith element of thejth observa-
tion. The use of these constraints allows the estimation of
all unknowns.

M~

()
wi=0 & Y wa' ==

1 i=1 %

M~

%

Different points in the image can correspond to the same
ray in the world. On the other hand, in a general imaging
system, different rays in the world can not be mapped to the
same image point. Thus, the general vector-valued func-
. . tionl = f (x) takes a non-injective form. In most cases,
3. Parametnc Representation of the General a general ((jir)ect projection mi)del does not exist, since one

Imaging Model 3D line can be mapped into more than one point in the im-
age plane. As a result, a general imaging model can only be
defined when considering the mapping from image coordi-
nates ta3 D lines.

From the definition of general imaging model, intro-
duced by Grossberg and Nayéi,[each pixel in the image
x € P?is mapped to a ray iaD spacel € £3. As men-
tioned before, the model is based on an array of parameters A schematic representation of this model is shown in the
calledraxel. Figurel.



3.1. Non—Injective Vector—Valued Function

A 3D line representation has to be chosen for the output

of the vector—valued function. Lines 1D have four de-

grees of freedom. However, none of compact four variable

representations faD lines is complete.
Pluckercoordinates (Sectioh.2) are a complete, elegant

and easy to understand line representation. On the other
hand, it has six elements to represent four degrees of free

For two different imaging systems, using the same set
of points{c;}, the estimation of for an image poink only
depends on the matrid,,,,. Thus, we calH,,, thecamera
matrix. On the other hand, for the same imaging system, the
values of the parameters of tbemera matrixdepend on the
set{c;}, and that is why we call therwontrol points

Usually, in statistics, the sdic;} is calledcenters In
computer vision, the word center in an imaging system typ-

dom. Itis defined up to a scale factor and has an orthogonalC@lly designates the center of the projection. As a resull,

constraint associated to its elements.
Instead of usingPlicker coordinates as estimator, we
use a vector as the stacking of direction and monh&nt

(él, rh) . In other words, we are estimating two independent

vectors, up to the same scale factor.

Good estimates al andr yield small deviations from
the orthogonal constraint. However, it is possible to find
orthogonal vectorsl and m from their estimates using
Schmidtorthogonalization 4], by finding the closest rota-

tionmatrixto( d m dxm ), wherex =x/|x]|, or
by using the algorithm proposed by Bartoli and Stufij [

There are several ways to estimate a non—injective func-
tion from a set of scattered data. We use the RBF interpolant

described in Sectiod.3

P
s(x) = ao +agx+ Y wie (|lx —eill)

i=1

9)

where{c;},x € R2. We can rewrite the previous equation,
in matrix form as

s = (609 o) (%) ao
————
hwa

wherea = (ag,ax) andw = (wy, wa,...,wp). ¢; (X)

o(lx—cil)- p(x) = (1 21 22 ). ¢(x)andp ()
are row vectors.

The vector—valued function output is € RS where
eachl; is independent. Thus, we can use six indepen-
dent RBF interpolants to form the vector—valued function
s(x) = ((s1(x) s2(x) s6 (x) ), which can be
rewrote as

s = (@60 P )( nid nE

ne) )

Hya
(11)
The vector—valued function is a row vectsi(x) € R**¢,
which impliesiR = s” (x).
For a set{c;}, a matrixH,,, and a certain RBF, the es-
timates of the direction and moment vectors are given by

'R=(d” wm”7 )R=(¢(x) p(x) )Hwa (12)

we chose to name to the st; } ascontrol points

For a setP of control pointsdefineda priori {c;} and a
camera matrixH,, € R("+3)%6 it is possible to define a
generic smooth general imaging model by a vector-valued
functions : R? — RS,

The general imaging model only depends on the un-
known matrixH,,,, for a set of previously definecbntrol
points Therefore, the complete calibration of general imag-
ing models is obtained by estimatifg -+ 18 unknown pa-
rameters, that sets up tbamera matrix

4. Point—based Calibration

One significant disadvantage in the use of the general
imaging model is the difficulty in its calibration. Gross-
berg and Nayard] and Sturm and Ramalingam{] define
two methods for the calibration. The complete calibration
is achieved when each image pixel hasgel associated to
it. To estimate oneaxel, at least twa® D points are required
for each same image point.

The method presented in this paper aims at relaxing the
calibration procedure, by using the parametric representa
tion of the general imaging model described in Section
The goal is to calibrate a general imaging model without es-
timating each and all theaxelswhile, at same time, allow-
ing the same resolution. In addition, the method should re-
quire only a set of point correspondendas — p; }, ({p:}
is the set of world points anfk; } its correspondents points
in the image plane), where we can use points correspon-
dences that satisfy

X; # Xj7 Vi75j (13)
We never need to know more than one world points, for a
point in the image plane.

There are two sets of unknowns in the calibration proce-
dure: the set o€ontrol points{c;} and thecamera matrix
H,,, elements.Control pointscan be define@ priori, by
selecting a seP of scattered image points, that can or can-
not be a subset of data poirts;} C {x;}.

In the rest of this section, we describe a linear method to
estimates P + 18 parameters of theamera matrixfor a set
of control pointsdefineda priori.



4.1. Calibration Matrix M column spacef M isC (M) = 6P + 17, which means that
the dimension of thaull-spaceof M must be\ (M) = 1.
From Equation 12), any solution for thecamera ma-
trix is defined up to a scale factor. Thus, assuming that
~\T ~\T N (M) = 1, any element of the one dimensionalll—
(Q (p) IR) = <1R) Q)" snglce)of M is solution, except for therivial solution
s Qe = o0 @) vl =0
To prove that the dimension of tleelumn spacef M
Replacings (x), in Equation (5) by Equation {1) isC(M) = 6P + 17, we decompose Equatioi§) into
rows, by means of th&roneckerproduct. Permutation of
( o) (x)T P (x)T ) H..Q (p)T =0 (16) the rows in any matrix does not change the dimension of
the column spaceMaking N = 2P, and for a matrixXD €
r(x) R18*6P+18 it can be proved thaf (M) = 6P + 17-see
wherer (x) € RIX(P+3). next section anﬂl]. . .
The unknowns are the elements of the maffiq. The computation of the dimension of tkelumn space

Thus, we useKroneckerproduct, Sectior®.1, that allow and coresponding constraints is described .
us to rewrite {6) in order to isolate the unknowcamera
matrix as

World points incident with lines must satisfy Equa-
tion (5). From functionlR = s (x)T and EquationX)

0 (14

4.3. Relationship betweerControl Points point cor-
respondences andadial basis functionused in

[Q(p) ®r (x)]vec (Hya) = 0 (17) the calibration

In this section, we describe the constraints that must be
met by{x;} and{c;} to obtainC (M) = 6P + 17. We also
suggest two types aadial basis functionsthat can be used
to getC (M) = 6P + 17.

Consider that we have a set of point correspondences,
{x; = pi} fori = 1,...,2P, wherex; # x;, Vi # j.
Next split up the sefx;} into two sub-setsX¥ = {x;}, for

where the matrixQ (p) ® r(x) € R**(6PF18) and
vec (Hya) € ROPHI8) s the stacking oh), columns,
fori=1,...,6.

For a setN of point correspondencegs; — p;} of the
same imaging systenQ (p;) ® r (x;)] vec (Hywa) = 0
and we can build the calibration matrix

Q(p1) ®r(x1) i=1,...,PandY = {x,},forj=P+1,...,2P.
In[15] and [L1] it is shown that onlycontrol point({c; },
Q(pz) @r(x2) fori=1,..., P)anddata point{{x,},forj =1,...,2P)
M — : (18) that meet the condition
Q(py) ®r (xn) d < eq (1)
D

can be considered. In EquatioBlf, d = min{d;,d>},
0 < e <1,d = max{|[x; — ¢;||}, where the se{x;}
belongs to the seX, dy = max {||x; — ¢;||}, where the set
{x;} belongs taY" and2q = min,; {||c; — c;||}.

Note that (from [L1]) if we consider{c;} = X and if
dy < eq then we can also obtathi(M)) = 6P + 17. This

where M € RUANFIX(OP+I8) and matrix D €
RISX(6P+18) is as ﬂ-ll

Calibration procedure is reduced to the estimation of the
unknowncamera matrixt,,, such that

Moec (Hya) = 0 (19) solution also meets the constraint# x;, Vi # j.
that means Quaket al. [15] proved thatg, (r) = (87 + 7‘2)1/2 and
vee (Hya) € null (M) (20) oo (r) = e=har’ are good choicgs foadial basis functions
o _ because, choosing an appropriéteandgs, they reduce the
wherenull (.) indicates matrbnull-space negative effects of small values gfande respectively, in

4.2. Computation of theCamera Matrix Equation ¢1).
From Equation Z0), it results that the estimate of the g Experiments
camera matrixmust belong the thaull-spaceof the cali-
bration matrixVI. The calibration method and general imaging model de-
To ensure an unique solution, and singe (Hya) € scribed in this paper were evaluated using both synthetic
RO6P+18 we have to make sure that the dimension of the data sets and real data sets.
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Figure 2: Evaluation of the average line distance error,afiqn 24), as a function of the number abntrol points for
non—central catadioptric systems with sphigfeand hyperbolic mirrofb). Dashed lines correspond to the average errors in
the cases where Gaussian random noise was added to thenedesdi

5.1. Results with Synthetic Data Sets into euclidean4-spaceg = (g1,92,93,94) and h =

. h1, ho, hs, hy) [14] such that
Synthetic data sets were used to evaluate the effect ofa( 1252, ha, ) [14]

varying number ofontrol pointson a error measure defined
as a distance betwed&D lines. We usednulti-quadrics

¢1(r) = (67 + r2)1/2 andexponentiab, (1) = e=%2"" as

g= (93— 91,94 — 92, 1,92, —91, 0194 — 9293) (22)
h = (h3 — h1, ha — ha, 1, ha, —hi, hihy — hohs) (23)

radial basis functions The distances between the lines are estimated using
The synthetic data sets were obtained for non—central

catadioptric systems$]. Two types of quadric mirrors were N2 o4

consideF;ed: h{/perboﬁc and :Shericac: mirrors. d (g, h) - 7,; (9i = hi)” + (g1 — ) (93 — hs) +
The calibration method estimates an interpolant function / (92 — h2) (g4 — ha)

s : R? — RS that should fit an imaging model, defined by (24)

a functionf : P? — £3, wheref is an analytical represen- We evaluate the results by varying the numbecafdtrol

tation of the corresponding imaging model. In the case of points P, from 20 to 100, and with a set of point corre-
a non—central catadioptric system made up of a perspectivespondencesV = 2P. For each number afontrol points
camera and hyperbolic or spherical mirror, an analytical ex (P), we evaluate the calibration using the ground truth data

pression foif can be obtained5] Section 4.3]. set{y; — 1;} fori = 1,...,120. For each set ofontrol
We usef to generate a data set ¢; — p;}, fori = points we repeat the calibratio200 times, where the sets
1,...,N and selectP control pointsfrom the set{x;}, {x;} and{y;} are chosen randomly.
where the conditions described in Sectibf are met. We repeat the same procedure adding Gaussian ran-
Usingf, we generate a ground truth data §gt — 1;}, dom noise{p,} to the world coordinate$p; + p;}. The
wherey; are the ground truth image coordinates &ndre standard deviation of the Gaussian noise added to the co-
the ground truth line coordinates. ordinates{p,} was std (pz(.”) = 0.25¢ where u;, =

We use the sdix; — p;} and{c; } to calibrate the imag-
ing system. With the interpolant functioss we generate
the estimated se{yi — L}, wherel; = s (y;) ands are
defined in Sectio3. 1 5.2. Experiments Using Real Data Sets

We want to measure the deviation bffrom I, To
characterize the error we use the average of the distancea

(u§1)7u52)7u§3)) ande = min {||p; — p;[}, for alli # ;.

Results are shown in Figuge

For experiments with real data sets, we calibrated three
N ifferent types of imaging systems, using our represeoniati
€ =d (1i> li)- of the general imaging model and its point-based calibra-
Consider two lines represented BKicker coordinates  tion. We used a projective camera and two different cata-
gR andhR that can be approximated via local mappings dioptric systems, Figurga, 3d and3g respectively.
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Figure 3: Results with real data generated by our approatireajeneral imaging model, for three types of camera models:
perspective camer@), catadioptric system with spherical mirr@i) and catadioptric system with two planar mirrgcs.
Yellow points in(b), (e)and(h) are the set of image coordinates; } and yellow points ir{c), (f) and(i) are the corresponding
set of world pointsp; }, used in the calibration process. Red squares iR Ih@lot and the red rays in th&D plot are the a

subset of{yi — L—} produced wittmulti-quadricsRBF. Green points ifb), (e) and(h), are the corresponding setaintrol
pointsused in the calibration.

To acquire the point correspondendes — p; } for the corresponding position in the chess board. The association
calibration process, we used a chess board. We attached tset{x; — p;} will be used in the calibration process.
the chess board infrared (IR) LEDs and their positions in the
world are measured using an IR trackep][ This tracker
has an accuracy of 1mm and a resolution df.01mm.

The set of image point$x;} are the yellow points in
Figures3b, 3eand3h. The set of world point$p; } are the
yellow points in FigureSc, 3f and3i.

Each corner of the chess board in the imag# is asso- Control points{c;} are chosen as a subset{af; }. They
ciated to a position in the worldp(), which is given by its  are shown as green points, in Figuis 3eand3h.



Multi—quadrics[cm]
0.5651 +0.4373
1.4592 + 0.9974
0.9738 £+ 2.4991

RBF | Gaussiancm]
Projective | 1.1488 + 3.1436
Sphere mirror| 3.0164 £ 6.2657
Plane mirrors| 0.9972 + 2.1595

7N M parameters, for ail/ x N image, required by the
discrete generic imaging model, this approach only require
6 (P + 3) for P control points

The calibration procedure described in this paper only
requires the 3D coordinates of a world point for each image

Table 1: Average and standard deviation of the distances, inPCint, whereas previous approaches require two or more 3D
centimeters, between points in the world and lines generate Points for each image point. On the other hand, the calibra-
by our representation of the general imaging model. We tion parameters which are estimated for a sub-set of image

use the sefx; — p;} fori = 1,...,700 as calibration set  Points can be generalized for all image pixels, which con-
1,...,3840, for each

and the set{yi — L}, where:
imaging system, as the test set.

Using {x; — p;}, we estimate the interpolant function
s. Since, in the real experiments, we havVe > 2P, we
will have an over—determined solution. The solution for the
camera matrixs obtained using a least—squares solution for
the homogeneous equatiorid. [

To evaluate the calibration, 3D coordinates from a dif-
ferent object were used. The IR tracker has a "test object”
(also with LEDs) which is provided to enable the estimation
of 3D coordinates of points. This different object was used
to generate a new data dgt; — w;}, wherey; are image
points andw; are world points. This new data set was used
to evaluate the calibration performed with the former data
set.

The distance error is defined by the distance from the
world pointp; to the generated link, wherel;, = s (y;).

A subset of{y;} and corresponding Iine%ii} is shown as

red squares, in Figureéd, 3e and3h, and as red lines, in
Figure3c, 3f and3i, respectively.

The geometric distance between a line Bitiicker co-
ordinates) and a point in the world is given by= ||€;||,
where

€; = ( [Wz]x I )L

andl; = L,/ [|d,]|.

The number otontrol pointsused in the calibration were
90, 120 and150, for the imaging systems of Figur8s, 3d
and3grespectively. The results are shown in Tabbes well
as in the video, provided as supplementary matetidl [

(25)

6. Conclusions

The calibration method described in this paper can be
used in the calibration of complex camera models, namely
for cameras which no analytical projection model exists.

The approach is based on a parametric version of the

stitutes an important advantage of this method.
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