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Calibration of Smooth Camera Models
Pedro Miraldo and Helder Araujo

Abstract—Generic imaging models can be used to represent any camera. Current generic models are discrete and define a mapping

between each pixel in the image and a straight line in 3D space. This paper presents a modification of the generic camera model

that allows the simplification of the calibration procedure. The only requirement is that the coordinates of the 3D projecting lines are

related by functions that vary smoothly across space. Such model is obtained by modifying the general imaging model using radial

basis functions to interpolate image coordinates and 3D lines, thereby allowing both an increase in resolution (due to their continuous

nature) and a more compact representation. Using this variation of the general imaging model we also develop a calibration procedure.

This procedure only requires that a 3D point be matched to each pixel. In addition not all the pixels need to be calibrated. As a result

the complexity of the procedure is significantly decreased. Normalization is applied to the coordinates of both image and 3D points

which increases the accuracy of the calibration. Results with both synthetic and real data sets show that the model and calibration

procedure are easily applicable and provide accurate calibration results.

Index Terms—General Camera Models, Camera Calibration, Smooth Vector–Valued Functions.

✦

1 INTRODUCTION

MOST cameras can be modeled by a perspective
projection, which implies that all projecting rays

intersect at a single point. These cameras are usually
called central cameras. The calibration process for per-
spective cameras model (pinhole model) is well known
and easy to implement [1], [2], [3]. Other camera models
that verify the single view point constraint but do not
satisfy the pinhole model have been defined, for example
special cases of catadioptric camera models [4], [5].
Moreover, central camera models with non–parametric
association from image pixels to rays, (General Central
Camera Model) and their respective calibration have also
been studied [6], [7], [8].

In the last few years, cameras whose projecting rays do
not satisfy the constraint of intersecting at a single effec-
tive viewpoint started to be used, due essentially to the
large fields of view that can be obtained. These cameras
are called non–central and in many cases are obtained
by a generic combination of a perspective camera and a
curved mirror–the non-central catadioptric cameras [9],
[10], [11], [12] (Figure 3(a)). They are used in several
applications ranging from robotics to visualization.

Many other non–central camera models have also been
developed such as linear cameras [13], [14], [15], [16]
(Figure 3(d)), fisheye cameras [17], [18] or camera models
that include refractive elements [19], [20] (Figure 3(g)).
All of these systems have, in general, models that are
characterized by a small number of parameters. Since the
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number of parameters is small the calibration procedures
are in general, simple.

All of these models are specific since they are derived
using geometric models of the cameras [21] and therefore
they lack generality. To deal with these drawbacks, some
techniques were developed to calibrate special classes of
cameras such as [22], [23].

Grossberg and Nayar [24], [25] define a non–
parametric discrete imaging model that can represent
any type of camera, central or non–central (General Cam-
era Model). Differently from the usual parametric camera
models, this camera model consists in the individual
mapping between pixels and rays in 3D space, Figure 1.
To each pixel, a set of parameters called raxel is associ-
ated. The set of all raxels (representing all pixels) con-
stitutes the complete General Camera Model. A raxel is a
set of parameters including image pixel coordinates, the
coordinates of the associated ray in the world (position
and direction) and radiometric parameters.

Grossberg and Nayar also propose a method for esti-
mating the parameters of the General Camera Model. Their
approach requires the acquisition of, at least, two images
of a calibration object with known structure and also
requires the knowledge of the object motion between the
images. It requires two world points for the same image
pixel.

Sturm and Ramalingam at [26] and Ramalingam et
al.at [27] proposed a calibration method based on the
non–parametric imaging model, suggested by Grossberg
and Nayar. However, they excluded from their model the
radiometric entities of the raxel. Their method assumes
that the camera is fully described by the coordinates of
rays and the mapping between rays and pixels.

Instead of using two images, Sturm and Ramalingam
methods require three images of the calibration object,
acquired from arbitrary and unknown viewing positions.
If three points of the calibration object are seen for
the same pixel, the collinearity constraint allows the



2

Image Space

World Space

Fig. 1. A unified camera model only assumes that an

association between image pixels and rays in the world

space exists.

computation of the motion between the images of the
calibration object and, as a result, it allows the estimation
of the direction of the ray in 3D space.

All the methods mentioned above are discrete and
non–parametric, using mapping arrays (raxels) to cali-
brate the imaging model. Image pixels have associated
a set of parameters that are independent from their
neighbors.

Most of the useful camera models have, in general,
a pixel–ray relationships that vary smoothly along the
image. That is the case of the central perspective camera,
non-central catadioptric systems with quadric mirrors,
linear cameras, fisheye cameras and of camera models
that include refracting elements.

In this article we change the discrete model defined
by Grossberg and Nayar by assuming that the 3D rays
associated to the pixels vary smoothly throughout the
image. The assumption of smoothness is used as a
constraint in the definition of the camera model and
therefore in the calibration method. This paper extends
the approach presented in [28] where the Smooth Cam-
era Model was presented for the first time. This paper
provides further details concerning the application of
the Smooth Camera Model, and improves it by using
normalized coordinates. An example and discussion of
calibration with minimal data is presented. Additional
experimental results with synthetic data are presented.
The additional experimental results include a crossed-
slits camera model, a ”refraction camera” made up of a
perspective camera looking through a volume of water
and a non-smooth configuration made up of four per-
spective cameras looking at the same scene. Additional
experimental results with real images are also included
namely the case of a perspective camera looking at a
scene through a water-filled glass tank.

1.1 Model and Approach

Since the estimation of the raxels for all the image pixels
require a lengthy calibration procedure, other authors
have also assumed that the relationship between neigh-
boring pixels and neighboring 3D rays in the world vary
smoothly.
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Fig. 2. In this figure we display the result of the application

of the calibration method to the minimal case according

to the theoretical constraints (see Section 4.2.2). In the

minimal case there are six points in the the image and

their correspondent points in the world.

In [25] and [26], [27], the authors have also used this
constraint. The constraint is applied after the estimation
of at least a subset of all possible image pixels. Sturm and
Ramalingam used this constraint to interpolate between
a subset of calibrated raxels corresponding to neighbor-
ing pixels. Grossberg and Nayar at [25] defined a Caustic
Raxel Model that aimed at estimating a caustic surface
from a set of raxels.

In that model the estimation of the caustic (and there-
fore the calibration of the imaging model) requires the
estimation of the raxels. Such estimation needs that more
than one 3D point be used for each image pixel.

In both previous cases, the use of constraints enforcing
smoothness between neighboring pixels is used post
calibration to interpolate between pixels that were not
calibrated. In the proposed approach, the assumption
that the relationship between pixels and rays varies
smoothly is used directly in the model. For that purpose
a vector–valued function that can represent any Smooth
Camera Model is defined. A parametric representation for
the General Camera Model is defined which results in:

• a decrease in the number of unknown parameters;
• the number of parameters and image resolution

becoming independent.

Using this camera model, a new calibration procedure
can be developed, where:

• only one world point is needed for each image
point, unlike previous methods, [24] and [26] that
require at least two points in the world, for each
image point;

• the calibration procedure has lower complexity
since all the parameters are estimated in a single
step.

As in [26], only geometric entities of General Camera
Model are considered.

In Figure 2, an example of the advantages of the use
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of the proposed method in the calibration of smooth
camera models is shown. The minimal case (defined
according to the theoretical conditions) is considered,
where six matchings between world and image points
are known (see the proof in Section 4.2.2). In this exam-
ple all the coordinates of the image points are different.
The estimated 3D lines pass through the corresponding
3D points using one-to-one mappings, which occurs
as a result of applying the constraint that neighboring
pixels must correspond to neighboring rays in the world
(smoothness constraint).

The methods proposed can be considered a black box
general Smooth Camera Model which is linear and leads
to a simpler calibration method.

1.2 Outline of the Paper

In the next section, the mathematical notation that will
be used in the article is presented. In Section 3 the
proposed change to the General Camera Models, Smooth
Camera Model is defined. In Section 4 the proposed
method is described. Results are presented in Section 5
and discussed in Section 6.

2 NOTATION AND BACKGROUND

2.1 Notation

Matrices are represented as bold capital letters (eg.A ∈
R

n×m, n rows and m columns). Vectors are represented
as bold small letters (eg.a ∈ R

n, n elements). By default,
a vector is considered a column. Small letters (eg.a)
represent one dimensional elements. By default, the jth
column vector of A is specified as aj . The jth element
of a vector a is written as aj . The element of A in the
line i and column j is represented as ai,j . Regular capital
letters (eg.A) indicate one dimensional constants.

We use R after a vector or matrix to denote that it is
represented up to a scale factor.

Let U ∈ R
m×n, V ∈ R

k×l and C ∈ R
m×k be known

and X ∈ R
n×l unknown. Using Kronecker product, we

can write

UXVT = C =⇒ (V ⊗U)vec (X) = vec (C) (1)

where ⊗ is the Kronecker product of U and V, with
(V ⊗U) ∈ R

mk×nl, and vec (X) is a nl–vector formed
by stacking the columns of X.

2.2 Plücker coordinates

Plücker coordinates are a special case of Grassmann co-
ordinates [29]. A Grassmann manifold is the set of k
dimensional subspaces, in a n dimensional vector space,
and it is denoted as Λk

R
n. Plücker coordinates can be

obtained as a representation of the exterior product
to four dimensional vectors x ∧ w. The result of this
operation lies in a six dimensional vector space R

6, that
can represent lines in 3D space.

Consider two points in the world (x and w in P3) rep-
resented in homogeneous coordinates R

4. Using Plücker

coordinates, we can represent a 3D line, incident on both
points, as

lR
.
= x ∧w = (l01, l02, l03︸ ︷︷ ︸

d

, l23, l31, l12︸ ︷︷ ︸
m

) ∈ Λ2
R

4 ⊂ R
6

(2)
with lij = xiwj − xjwi, basis eij = ei ∧ ej (ei are R

4

basis) and d and m are, respectively, the direction and
the moment of the line.

Although all elements of the four dimensional exterior
product, Λ2

R
4, belong to R

6, not all elements of R6 repre-
sent lines in 3D space. It can be shown that, Equation (2)
is the result of a four dimensional space exterior product
(and therefore it is a line in 3D space), if and only if it
belongs to the Klein quadric which is the same as write
〈d,m〉 = 0.

Plücker coordinates enable the computation of the
incidence condition of lines and points in the world.
Using the direction and moment vectors, a point p ∈ P3

is incident on a line l ∈ Λ2
R

4 if
(

[p]x −I

0 pT

)

︸ ︷︷ ︸
Q(p)

lR = 0 (3)

where p ∈ R
3 (non–homogeneous representation), [a]x is

a matrix that linearizes the exterior product as [a]x b =
a× b and I is a 3× 3 identity matrix.

2.3 Interpolation

Suppose that we want to estimate an unknown function,
f : R

D 7→ R, from a set of scattered data points
X

.
= {xi} ⊂ R

D (with D a natural number) and
Y

.
= {yi}, where the set {xi, yi} forms a training data

set {yi = f (xi)}.
Interpolation requires the computation of an interpo-

lating function, s : RD 7→ R, that satisfies

s (xi) = f (xi) , ∀i. (4)

Radial basis functions (RBF) [30], [31], [32], [33] can be
used to solve this problem. For a set P of training points
{x1, . . . ,xP }, the RBF interpolant function has the form

s (x) = a0 + aTx x+

P∑

i=1

wiφ (||x− xi||) (5)

where ||.|| is the 2–norm vector [34], φ : R+ 7→ R is the
radial basis function and ax ∈ R

D. a0, ax and wi are the
interpolant unknowns.

There are two types of kernel functions that can be
used as the RBF interpolant. One type of kernel functions
does not have shape parameters, like thin–plate splines,
φ (r) = r2log (r), or φ (r) = r2. The other type of kernel
functions does have shape parameters, such as Gaussian
functions φ (r) = exp

(
−γ2r2

)
, and multi–quadrics with

φ (r) =
(
γ2 + r2

)1/2
where γ is the shape parameter.

The interpolation is obtained by means of the esti-
mation of the unknown parameters of the interpolant
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(a = (a0,ax) and w = (w1, . . . , wP ) of Equation (5)).
The interpolating function s (x) has P + D + 1 degrees
of freedom and the data sets X and Y only yield P
equations. For the estimation of the unknowns in Equa-
tion (5), additional constraints have to be used. Consid-
ering the function φ conditionally positive definite [31],
the following equations are verified,

P∑
i=1

wi = 0 &
P∑
i=1

wix
(i)
1 = · · · =

P∑
i=1

wix
(i)
D = 0 (6)

[28], [31] where x
(j)
i is the ith element of the jth obser-

vation. The use of these constraints allows the estimation
of all unknowns.

The estimation of the unknown parameters can be
obtained using the following relation

(
Φ PT

P 0

)

︸ ︷︷ ︸
Γ

(
w

a

)
=

(
y

0

)
(7)

where φi,j = φ (||xi − xj ||). Furthermore, considering
D = 2, we can see that C (Γ) = P + 3 implies P ≥ 3.

3 SMOOTH CAMERA MODEL

From the definition of General Camera Model Figure 1,
introduced by Grossberg and Nayar [24], each pixel in
the image x ∈ P2 is mapped to a ray in 3D space l ∈ L3.
As mentioned before, the model is based on an array of
parameters called raxel and it can be used to represent
central or non–central camera model as well as smooth
and non–smooth camera models.

In that model, a complete General Camera Model is
represented by a non–parametric discrete array of rax-
els, that contains all possible pixels in an image. This
means that the pixel–line mappings are required for
all pixels, independently of the image resolution or
of the smoothness on the variation of the parameters
(corresponding to the 3D lines associated to neighboring
pixels). If we consider only the geometric entities in
Grossberg and Nayar’s model, each raxel contains at least
seven parameters. Thus, for each pixel, there are seven
unknown parameters to be computed. For an image with
size N ×M , there are 7NM unknown parameters to be
computed. We aim at deriving a model that requires a
smaller number of parameters.

Since most of the imaging devices are characterized
by having a smooth relationship between image pixels
and lines in the world we use the assumption that the
pixel–line mappings can be represented by a smoothly
varying vector–valued function f : P2 7→ L3, that maps
a point in the image plane to a line in 3D space. We use
this approach to represent the Smooth Camera Model. This
assumption significantly decreases the number of model
unknowns and also allows to filter out some error due
to noise.

In most cases, a general direct projection model does
not exist, since one 3D line can be mapped into more

than one point in the image plane. As a result, a General
Camera Model can only be defined when considering the
mapping from image coordinates to 3D lines. A recent
result, however, derived an analytical model for the
forward projection of a non-central system made up of
a perspective camera and a rotationally symmetric conic
mirror [10].

As previously described, a single mapping between
points in the image to points in the world is insufficient
to define a raxel and as a consequence it can not define
a General Camera Model. The information of the direction
of the line can not be recovered. However, if we assume
that the relationship between image points and world
lines varies smoothly, we are imposing new constraints
to lines. Those constraints will implicitly allow the com-
plete calibration of the Smooth Camera Model using only
a single point in the world for a point in the image,
as proved in the following sections. An example can be
seen in Figure 2.

4 THE PROPOSED METHOD

In this section we describe the formulation of the pro-
posed approach to represent the Smooth Camera Model,
Section 4.1, and the calibration procedure, Section 4.2. In
Section 4.3, we describe the data-set normalization.

4.1 Vector–Valued Function

A 3D line representation has to be chosen for the output
of the vector–valued function. Lines in 3D have four
degrees of freedom. However, none of the compact four
variable representations for 3D lines is complete.

Plücker coordinates (Section 2.2) are a complete, ele-
gant and easy to understand line representation. On the
other hand, it has six elements to represent four degrees
of freedom. It is defined up to a scale factor and has an
orthogonal constraint associated to its elements.

Instead of using Plücker coordinates to represent 3D
lines, we use a vector made up by stacking the vectors of

the direction and moment l̂R =
(
d̂, m̂

)
. In other words,

two independent vectors are estimated, up to the same
scale factor.

Good estimates of d̂ and m̂ yield small deviations
from the orthogonal constraint. However, it is possible
to find orthogonal vectors d and m from their estimates
using Schmidt orthogonalization [34], by finding the

closest rotation matrix to
(

d̂′ m̂′ d̂′ × m̂′

)
, where

x′ = x/ ||x||, or by using the algorithm proposed by
Bartoli and Sturm [35].

There are several ways to estimate a non–injective
function from a set of scattered data. We use the RBF
interpolant described in Section 2.3

s (x) = a0 + aTx x+

P∑

i=1

wiφ (||x− ci||) (8)
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where {ci} ,x ∈ R
2. We can rewrite the previous equa-

tion, in matrix form as

s (x) =
(

φ (x) p (x)
)( w

a

)

︸ ︷︷ ︸
hwa

(9)

where φ (x) and p (x) are row vectors, with φi (x) =
φ (||x− ci||) and p (x) =

(
1 x1 x2

)
.

The vector–valued function output is l̂ ∈ R
6 where

each l̂i is independent. Thus, we can use six independent
RBF interpolants to form the vector–valued function

s (x) =
(

s1 (x) s2 (x) . . . s6 (x)
)

, which can be

rewritten as

s (x) =
(
φ (x) p (x)

)(
h
(1)
wa h

(2)
wa . . . h

(6)
wa

)

︸ ︷︷ ︸
Hwa

. (10)

The vector–valued function is a row vector, s (x) ∈ R
1×6,

which implies l̂ (x)R = sT (x).
For a set {ci}, a matrix Hwa and a certain RBF, the

estimates of the direction and moment vectors, as a
function of the coordinates of the image points, are given
by

l̂ (x)
T
R =

(
d̂ (x)

T
m̂ (x)

T
)
R =

(
φ (x) p (x)

)
Hwa.

(11)

From the previous equation, it can be observed that
for two different imaging systems using the same set of

points {ci}, the estimation of l̂ for an image point x only
depends on matrix Hwa. Thus, we call Hwa the camera
matrix. On the other hand, for the same imaging system,
the values of the parameters of the camera matrix depend
on the set {ci}, and that is why we call them control
points.

Usually, in statistics, the set {ci} is called centers. In
computer vision, the word center in an imaging system
typically designates the center of the projection. As a
result, we chose to name to the set {ci} as control points.

For a set P of control points defined a priori {ci} and
a camera matrix Hwa ∈ R

(P+3)×6, we define the general
Smooth Camera Model model by the vector–valued func-
tion s : R2 7→ R

6.
The Smooth Camera Model only depends on the un-

known matrix Hwa, for a set of previously defined control
points. Therefore, the complete calibration of the Smooth
Camera Model can be obtained by estimating 6P + 18
unknown parameters, that sets up the camera matrix.

4.2 Linear Point–based Calibration

One disadvantage of the use of the General Camera Model
is the difficulty of its calibration. Grossberg and Nayar
[24] and Sturm and Ramalingam [26] define two different
methods for the calibration. However in both cases, the
complete calibration is achieved when we have a raxel
for any pixel of the image. Note that the estimation of a

single raxel requires at least two points in the world for
the each image pixel. Since the estimation of the raxels
for every pixel is a difficult task, interpolation methods
were used to estimate all the raxels from a subset of
calibrated raxels (already described in Section 1.1). The
goal in the calibration of a Smooth Camera Model is to
allow the calibration of the respective model without
estimating each and all the raxels while, at same time,
allowing the same resolution.

In the method described in this paper, the calibration
procedure only requires a set of point correspondences
{xi 7→ pi}, (where {pi} is the set of world points and
{xi} are their corresponding points in the image plane).
Point correspondences that satisfy

xi 6= xj , ∀i6=j , (12)

can be used. For each image pixel only the coordinates
of one 3D point are necessary.

There are two sets of unknowns in the calibration
procedure: the set of control points {ci} and the elements
of the camera matrix Hwa. Control points can be defined a
priori, by selecting a set P of scattered image points, that
can or cannot be a subset of data points {ci} ⊂ {xi}.

In the rest of this section, we describe a linear method
to estimate the 6P + 18 parameters of the camera matrix,
for a set of control points defined a priori.

4.2.1 Calibration Matrix M

World points incident on lines must verify Equation (3).

From l̂ (x)R = s (x)
T and Equation (3)

l̂ (x)
T
Q (p)

T
= s (x)Q (p)

T
= 0. (13)

Replacing s (x) from the previous equation, using
Equation (10)

(
φ (x)

T
p (x)

T
)

︸ ︷︷ ︸
r(x)

HwaQ (p)
T
= 0 (14)

where r (x) ∈ R
1×(P+3).

The unknowns are the elements of matrix Hwa. Thus,
using the Kronecker product, Section 2.1, which allows
to rewrite (14) in order to isolate the unknown camera
matrix as

(
Q (p)⊗ r (x)

)
vec (Hwa) = 0 (15)

where matrix Q (p)⊗r (x) ∈ R
4×(6P+18) and vec (Hwa) ∈

R
(6P+18) is the stacking of h

(i)
wa columns, for i = 1, . . . , 6.

For a set N of point correspondences {xi 7→ pi} of the
same imaging system,

(
Q (pi) ⊗ r (xi)

)
vec (Hwa) = 0

and the calibration matrix can be built as

M =




Q (p1)⊗ r (x1)

...

Q (pN )⊗ r (xN )

D




(16)
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where M ∈ R
(4N+18)×(6P+18) and matrix D ∈

R
18×(6P+18) is as [36].
The calibration procedure is reduced to the estimation

of the unknown camera matrix Hwa such that

Mvec (Hwa) = 0, which means vec (Hwa) ∈ null (M)
(17)

where null (.) indicates matrix null–space.

4.2.2 Computation of the Camera Matrix

From Equation (17), the estimate of the camera matrix
must belong the the null–space of the calibration matrix
M. To ensure an unique solution, and since vec (Hwa) ∈
R

6P+18, the dimension of the column space of M must be
C (M) = 6P +17, which means that the dimension of the
null–space of M will be N (M) = 1.

From Equation (11), any solution for the camera matrix
is defined up to a scale factor. Thus, assuming that
N (M) = 1, any element of the one dimensional null–
space of M is a solution, except for the trivial solution
vec (Hwa) = 0.

To prove that the dimension of the column space of
M is C (M) = 6P + 17, we decompose Equation (16)
into rows, by means of the Kronecker product. Since the
permutation of the rows in any matrix does not change
the dimension of the column space, defining N = 2P , it
is possible to rearrange matrix M as a block of matrices
similar to Γ (Equation (7)). It can be proved that if a
specific set of constraints is met, then matrices Γ are full
rank, C (D) = 17 and C (M) = 6P + 17–see next section
and [36].

From this result, and since C (Γ) = P + 3 implies
P ≥ 3, we can conclude that the minimal configuration
to ensure a unique solution for the computation of the
camera matrix corresponds to N = 6. An example of a
calibration corresponding to the minimal case is shown
in Figure 2.

4.2.3 Relationship between Control Points, point corre-

spondences and radial basis function used in the calibra-

tion

In this section, we describe the constraints that must be
met by {xi} and {ci} to obtain C (M) = 6P + 17. Two
types of radial basis functions, that can be applied to get
that rank are also discussed.

Let us assume that a set of point correspondences,
{xi 7→ pi} for i = 1, . . . , 2P and xi 6= xj , ∀i 6= j is
available, and that it can be split into two sub-sets such
that

K(1) .
= {xi} for i = 1, . . . , P

K(2) .
= {xi} for i = P + 1, . . . , 2P.

(18)

In [32] and [36] it is shown that only control points
({ci}, for i = 1, . . . , P ) and data points ({xi}, for i =
1, . . . , 2P ) that meet the condition

d < ǫq (19)

can be considered. In Equation (19), d = min {d1, d2},
0 < ǫ ≤ 1, d1 = max {||xi − ci||}, where the set {xi}
belongs to the set K(1), d2 = max {||xi − ci||}, where the
set {xi} belongs to K(2) and 2q = minj 6=i {||ci − cj ||}.

Note that (from [36]) if we consider {ci}
.
= K(1) and if

d2 < ǫq then we can also obtain C (M)) = 6P + 17. This
solution also meets the constraint xi 6= xj , ∀i 6= j.

Quak et al. [32] proved that φ1 (r) =
(
γ2
1 + r2

)1/2
and φ2 (r) = exp

(
−γ2r

2
)

are good choices for radial
basis functions, since that, by choosing an appropriate γ1
and γ2, the negative effects of small values of q and ǫ
respectively in Equation (19) can be reduced.

4.3 Data Normalization

One of the issues in the method proposed in [28] is
related to the shape parameters of the RBF. The choice
of this values depends on the distribution of set of the
image points {xi}. To avoid this problem, a data normal-
ization procedure for both image and world coordinates
was developed. We consider non–isotropic normaliza-
tion [37] for both image and world points, such that

• the centroid is at the origin;
• the principal moments are equal to unity.

If on one hand, normalization of the image space
coordinates is easy to implement, on the other hand,
normalization of the coordinates of the set of world
points {pi} will have additional implications. The nor-
malization of the coordinates of the world points, {pi},
in the calibration procedure will imply a change on the
parameters of the Smooth Camera Model. To account for
this change, the inverse of this transformation has to be
applied to the parameters of the Smooth Camera Model
that were estimated.

4.3.1 Scaling the Coordinates of the Set of Image Points

For the normalization of the image space, an affine
transformation

ui = a−1 (Axi + a) (20)

is considered, where A ∈ R
2×2 is upper triangular, and

a ∈ R
2.

To obtain the normalization parameters {A,a, a}, an
affine transformation based on Choleski factorization is
used [34], [37]. Let us consider the homogeneous repre-
sentation of the image coordinates x as x. Since matrix
N∑
i=1

xix
T
i is symmetric and positive definite, using the

using the Choleski factorization one can define
N∑
i=1

xix
T
i =

NK1K
T
1 , where K1 ∈ R

3×3. Developing this equation,

we get
N∑
i=1

K−1
1 xix

T
i K

−T
1 = NI. As a result, and using

ui = K−1
1 xi, one obtains

N∑
i=1

uiu
T
i = NI which means

that the set {ui} has its centroid at the origin of the
coordinate systems and the two principal moments of
the set of points are equal to one.
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Since K1 is upper triangular, K−1
1 is also upper trian-

gular and we can define

K−1
1 =

(
A a

0 a

)
, (21)

which includes the parameters of the affine transforma-
tion of Equation (20).

4.3.2 Scaling the Coordinates of the Set of World Points

To apply the normalization to the coordinates of the
points in world space, a method similar to the method
described in the previous section is applied. The coor-
dinates of the set of world points {pi} are changed into
{qi} such that

qi = b−1 (Bpi + b) and K−1
2 =

(
B b

0 b

)
(22)

where K−1
2 ∈ R

4×4 is an upper triangular matrix (for
points in 3D space). B ∈ R

3×3 is upper triangular and
b ∈ R

3.
Note that this normalization has consequences: it will

change the coordinates of the line space. The output of
function s are the coordinates of the 3D lines. Therefore
one has to account for this change of coordinates. The
line coordinates which are the output of function s have
to be changed into the original coordinate frame.

Using the affine transformation defined at the Equa-
tion (22) and from the definition of Plücker coordinates,
we define an affine transformation in line space as

l(2)R =

(
B 0

−b−1 [b]x B b−1det (B)B−T

)

︸ ︷︷ ︸
E

l(1) (23)

(for the derivation of the matrix E see the author web
page). Note that B is non–singular, which means that
matrix E is invertible and l(1) can be estimated such that
l(1)R = E−1l(2).

4.3.3 Camera Model and Calibration with Normalization

In this section we describe the algorithm for the calibra-
tion of the Smooth Camera Model, using normalized data.

Step 1: Compute matrices K1 and K2 using the
method described in Sections 4.3.1 and 4.3.2, for the
set of points {xi} and {pi} respectively. Compute the
affine transformations parameters {A,a, a} and {B,b, b}
from Equations (21) and (22) respectively. Compute the
normalized image coordinates {ui} and {qi}, using
Equations (20) and (22) respectively. Using the affine
transformation, get the matrix E, using Equation (23).

Step 2: Compute the calibration matrix M using Equa-
tion (16). Note that instead of {xi} and {pi}, {ui} and
{qi} should be used, respectively.

Step 3: Get vec (Hwa) which minimizes Mvec (Hwa),
using the Singular Value Decomposition [3], and un-stack
vector vec (Hwa) to matrix Hwa.

Step 4: The camera model with normalization is de-
fined by a function s : R2 7→ R

6 where l̂R = s (x), such
that

s (x) = r
(
a−1 (Ax+ a)

)
HwaE

−T (24)

where r : R2 7→ R
(p+3) is defined in Equation (14). Note

that the coordinate system where line coordinates l̂ (x)
are represented is the same coordinate system where the
original set of point in the world {pi} is represented.

5 EXPERIMENTS

5.1 Results with Synthetic Data Sets

To evaluate the method described, synthetic data sets
were generated. Using known camera models, 3D lines
are generated, which are mapped into image points.
The data set made up by pairings between 3D points
and image points is obtained from the first data set
(containing coordinates of 3D lines) by computing 3D
points incident on the lines. The camera models used in
the evaluation were: catadioptric system with quadric
mirror, Figure 3(a); crossed–slits camera model, Fig-
ure 3(d); refraction camera model, made up of a camera
looking through a volume of water contained between
two parallel planes, Figure 3(g).

Since the mappings between points in the image and
3D lines are known, the calibration results can be eval-
uated by the estimates of the distance errors (distances
between lines) in line space. Note that the camera model
is represented by a mapping between points in the image
and 3D lines.

5.1.1 Evaluation Results Using Smooth Camera Models

Synthetic data sets were used to evaluate the effect of the
number of control points on the error defined as a distance
between ground truth 3D lines and estimated 3D lines.
As radial basis functions multi–quadrics and exponential
were used.

The synthetic data sets were obtained for the follow-
ing smooth camera models f : P2 7→ L3: non–central
catadioptric systems using quadric mirrors [9], crossed-
slits camera model [16] and refraction-based camera
model [19], [20].

The calibration method estimates an interpolant func-
tion s : R

2 7→ R
6 that should fit an imaging model,

defined by a function f : P2 7→ L3, where f is an analytic
representation of the corresponding imaging model.
f is used to generate a data set of {xi 7→ pi}, for i =

1, . . . , N and P control points are selected from the set
{xi}, with the conditions described in Section 4.2.3 being
met.

Using f , a ground truth data set is generated {yi 7→ li},
where yi are the ground truth image coordinates and li
are the ground truth 3D line coordinates.

The sets {xi 7→ pi} and {ci} are used to calibrate the
camera model. Using the interpolant functions s, the set{
yi 7→ l̂i

}
is estimated, where l̂i = s (yi).
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Fig. 3. Evaluation of the average line distance error, Equation (27), as a function of the number of control points, for

non–central catadioptric systems with a quadric mirror, for a crossed–slits camera model and for a model including

refraction (a camera looking through a volume of water contained between two parallel planes) (a), (d) and (g)

respectively. For each camera model we evaluate the distance error defined in Equation (27), for gaussian and multi–

quadrics radial basis functions and the errors are shown in Figures (b)-(c), (e)-(f) and (h)-(i) respectively.

To evaluate the calibration method the distances be-
tween l̂i and li are used. To characterize the error the

average of the distances ǫi = d
(
li, l̂i

)
is computed.

Let us consider two lines represented by Plücker coor-
dinates g and h, which can be approximated via a local
mapping into an Euclidean 4-space g̃ = (g1, g2, g3, g4)

and h̃ = (h1, h2, h3, h4) [29] such that

g = (g3 − g1, g4 − g2, 1, g2,−g1, g1g4 − g2g3) (25)

h = (h3 − h1, h4 − h2, 1, h2,−h1, h1h4 − h2h3) . (26)

The distances between the lines are estimated using

d
(
g̃, h̃

)2
=

4∑
i=1

(gi − hi)
2
+ (g1 − h1) (g3 − h3)+

(g2 − h2) (g4 − h4) .
(27)

The results are evaluated by varying the number of
control points, P , from 10 to 100. For each number of con-
trol points, the calibration is evaluated using the ground
truth data set {yi 7→ li} for i = 1, . . . , 120. For each set
of control points, the calibration is repeated 150 times for
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Fig. 4. In this figure we show results of tests performed with the three previously mentioned camera models, Figure 3,

with noise added. We set the number of control points to 60 and vary the variance of the noise added to the coordinates

of the 3D points used in the calibration procedure. The standard deviation of the noise is proportional to the smallest

distance among all the world points of the calibration data set. (a) is the distance error in the line space for gaussian

RBF and (b) for multi–quadrics. To eliminate some errors, we can use more points than the ones needed for the

minimal solution. We consider the noise as 10% rate of the smallest distance between the world points and we vary

the β, where N = βP . The results are show in Figures (c) and (d) for gaussian and multi–quadrics respectively.

different values of {xi}, {yi} and {pi}, {li}, respectively.
The average of the distance errors is computed for each
number of control points.

The calibration results are dependent on the value of
the shape parameter in the case of either multi–quadric
or gaussian radial basis functions. By normalizing the data
coordinates as described in Section 4.3.3, the value of the
shape parameter is no longer dependent on the image
size and also on the spatial distribution of the image
points.

For a fixed value of the shape parameter, the error as
a function of the spatial distribution of the set {xi} was
evaluated. For that purpose and for each set {xi} and

{yi},
{
x
(j)
i

}
and

{
y
(j)
i

}
were computed with

x
(j)
i = xiσj ∀i (28)

for j = 1, 2, 3 with σ1 = 1.25, σ2 = 1.75 and σ3 = 2.5.
The results are shown in Figure 3. Note that by using
normalized coordinates the error variation does not de-
pend on the image size. Therefore the distance error can
be represented by a single curve.

5.1.2 Results with Noise Added

The same evaluation procedure was repeated by adding
Gaussian noise {µi} to the 3D coordinates of the points
used in the calibration procedure {pi}. For that purpose
the standard deviation of the norm of the noise vector
was defined as

std (||µi||) = αe (29)

where e = min (||pi − pj ||) for all i 6= j. Instead of using
the set {xi 7→ pi} to calibrate, the set {xi 7→ p̃i}, where
p̃i = pi + µi for all i, was used.

The errors are evaluated in line space (Equation (27))
for the three previously mentioned camera models, with
values for α from zero to 0.20. Calibration was per-
formed using normalized coordinates (Section 4.3.3) with
P = 60.

Results are shown in Figure 4(a) and 4(b) for gaussian
and multi–quadrics RBF, respectively.

Note that in the previous experiments, N = 2P was
used, for P equal to the number of control points. On
the other hand if N = βP for β > 2, then matrix M

can become full–column rank and, as a consequence, there
will be no exact solution for Hwa. However, an estimate
for vec (Hwa) can still be obtained, in the least–squares
sense [3].

The errors for β from 2 to 50 were also evaluated
(measured as the distances between the 3D lines cor-
responding to the ground truth and the estimated 3D
lines). For that purpose, P = 60 was used, and Gaussian
noise with α = 0.10, Equation (29) was added.

The results are shown in Figure 4(c) and 4(d) for
gaussian and multi–quadrics RBF, respectively.

5.1.3 Results Using Non–Smooth Camera Models

The approach described in this paper is based on the
assumption that the camera model is smooth. Therefore
this method can not be applied to general camera models
which line positions and orientations do not change
smoothly. However, and even in some of those camera
models, the approach can still be applied, provided that
errors at the discontinuities can be accepted.

As an example the calibration procedure was applied
to a non–central camera model obtained by combining
images acquired by four different perspective cameras,
with different poses (Figure 5(a)). The errors in 3D line
space (Equation (27)), displayed as a function of the
image coordinates are shown in Figure 5(b). These re-
sults were obtained for P = 250 and multi–quadrics RBF.
The errors are small over most of the global image with
the exception of the boundaries between the individual
images.

To obtain results with smaller errors, the image points
can be clustered based on the error distribution. To each
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Fig. 5. This figure shows results for a non–smooth camera model synthetically generated, and made up by combining

four images obtained from four different perspective cameras as shown in (a). In figure (b) errors corresponding to the

distances between the 3D lines are shown.

cluster, a specific radial basis functions can be assigned
(based on the the distribution of control points). Each
cluster can then be recalibrated individually.

5.1.4 Experimental Results Using 3D Data from a Single

Surface

In this section we present the results of a new calibration
experiment where the 3D points data used for the cal-
ibration belong to a single surface. Synthetic data was
obtained from a non-central catadioptric system made
up by a quadric mirror (Figure 3(a)). The catadioptric
system was used to generate the data for the calibration,
where it was assumed that the correspondences between
the world points and their images were known. We
consider world points on a spherical surface. Note that
the 3D points can not belong to a single plane or to
a single 3D line since in those cases the theoretical
conditions described in [36] are not satisfied and the null
space of matrix M has dimension greater than 1.

The results are shown in Figure 6. The image points
used to evaluate the calibration (ray estimation) are not
the image points used in the calibration process. We use
the a non–minimal solution, with 40 control points and
360 data points, and the camera matrix is given in the
least–squares sense [3]. From the experiments, lines are
estimated with small error.

5.2 Results with Data sets of Real Images

For experiments with real data sets, three different types
of imaging systems were calibrated, using the model
described in this article and point–based calibration.
A perspective camera and two different catadioptric
systems were used, shown in Figures 7(a), 7(d) and 7(g)
respectively. Note that the catadioptric camera model
with two planar mirrors is a non–smooth camera model.

To acquire the point correspondences {xi 7→ pi},
which is the data necessary for the calibration method, a
chess board was used. Infrared (IR) LEDs were attached
to the chess board and their positions in the world were
measured using an IR tracker [38]. This tracker has an
accuracy of 0.1[mm] and a resolution of 0.01[mm].

Each corner of the chess board image xi is associated
to a position in the world pi, which is given by its
corresponding position in the 3D chess board. The set
of associations {xi 7→ pi}, for i = 1, . . . , 3840, was used
in the calibration procedure.

The set of image points {xi} are the yellow points in
Figures 7(b), 7(e) and 7(h). The set of world points {pi}
are the yellow points in Figures 7(c), 7(f) and 7(i).

Control points {ci} are chosen as a subset of {xi}. They
are shown as green points, in Figures 7(b), 7(e) and 7(h).

Using {xi 7→ pi}, the interpolant function s is esti-
mated. Since in the real experiments we have N > 2P ,
the solution will be obtained solving an over–determined
system of equations. The camera matrix is estimated as
least–squares solution for the homogeneous equations
[3], Section 4.3.3.

To evaluate the calibration, a different set of 3D co-
ordinates, corresponding to a different object were used.
The IR tracker has a ”test object” (also with LEDs) which
is provided to enable the estimation of 3D coordinates
of points. This different object was used to generate a
new data set {yi 7→ wi}, for i = 1, . . . , 700, where yi are
image points and wi are world points. This new data set
was used to evaluate the calibration performed with the
former data set.

The distance error is defined by the geometric distance

ǫi from the world point wi to the line estimated l̂i, where

l̂i = s (yi). A subset of {yi} and the corresponding

lines
{
l̂i

}
are shown as red squares, in Figures 7(b), 7(e)

and 7(h), and as red lines, in Figure 7(c), 7(f) and 7(i),
respectively. We derived the geometric distance between
a line (in Plücker coordinates) and a point in the world
as ǫi = ||ǫi||, where

ǫi =
(
[wi]x −I

)
li (30)

and li = l̂i/
∣∣∣
∣∣∣d̂i

∣∣∣
∣∣∣. For more informatin, see the author

web page.
The number of control points used in the calibration

were 30, 35 and 40, for the imaging systems of Fig-
ures 7(a), 7(d) and 7(g) respectively. The results are
shown in Table 1.
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Fig. 6. Figure (a) represents the image points (black squares) and control points (red circles) used in the calibration

process. Their correspondent world points are shown in Figure (b) (black points). We consider 3D points on a spherical

surface. Figure (c) shows the results, where the ground–truth lines are shown as black lines and the estimated lines in

red. Points in the image that were used to generate the estimated lines Figure (c) are different from the image points

used in the calibration, (Figure (a)).

5.3 Using a Calibrated Perspective Camera to Ac-
quire a Data-set with Real Data

To further evaluate the calibration method, an additional
data-set of real data was acquired.

Consider an object or scene whose images are acquired
by two perspective cameras. One of the cameras is
looking directly at the object/scene, whereas the second
camera acquires images of the object by viewing it
through a glass tank filled with water (Figure 8(a)).
The goal is to calibrate the second imaging system, i.e.,
including the effect of viewing the object through the
glass tank filled with water. An example of the image
acquired by this system is shown in Figure 8(b).

A chess board is used to calibrate the system. Several
images of the chess board were acquired, with the chess
board in different positions and orientations. The direct
images of the chess board, i.e., acquired by the camera
that views the scene directly (not through the glass tank)
were used to estimate the coordinates of the planes in the
world coordinate system. For that purpose the Bouguet
calibration toolbox was used [39].

Eighteen different images of the chess board in differ-
ent positions and orientations were used. In each chess
board image there were of 160 points whose coordinates
could be used (these points are located at the intersection
of the edges). The points are displayed in Figure 8(c) as
yellow and blue dots. The coordinates of the points on
the chess board are used as world points forming the set{
p
(j)
i

}
where p

(j)
i are the coordinates of the i’th point

of the j’th chess position in the world.
Since these points are also visible in the image ac-

TABLE 1

Results for the experiments, using the IR tracker [38].

RBF Gaussian [cm] Multi–quadrics [cm]

Projective 0.93058± 1.9783 0.54711± 0.43567
Sphere mirror 2.8743± 2.1074 1.8863± 1.2379
Plane mirrors 0.91795± 1.0608 0.99492± 0.78778

quired through the water-filled glass tank (i.e. including
the effects of refraction), the images of the points on

of each chess-board images
{
x
(j)
i

}
(where x

(j)
i is the

i’th point coordinate of the j’th image of the j’th chess
board position) are associated with the corresponding

world coordinates
{
p
(j)
i

}
, forming the set of mappings{

x
(j)
i 7→ p

(j)
i

}
.

To test the calibration method the following procedure
was followed: for each specific chess board position
and orientation j, all the data from all other chess
boards at different positions and orientations was used
as calibration data set. The coordinates of the points of
the j’th chess board position were used as as ground
truth. Therefore the coordinates of the points of the j’th
chess board position were used as ground truth data
set {yi 7→ wi} (160 mappings between image and world
points) and the coordinates of the other points of the
other chess board positions were used as calibration
data–set {xi 7→ pi} (2720 mappings between image and
world points). For each yi, the distances between the

estimated lines l̂i and the corresponding points in the
world wi are estimated, using Equation (30).

This procedure is repeated for all the j’th chess board
positions and the means and standard deviation of the
distance errors are computed, for both gaussian and
multi-quadrics RBFs. The number of control points used
was 10. The corresponding results were 0.111±0.075[cm]
for multi–quadrics and 0.313±0.545[cm] for gaussian RBF,
respectively.

An example of the estimated lines, estimated using the
method described (for a specific plane position) is shown
in Figure 8(c), as red lines.

5.4 Removing Distortion: Results for a Spherical
Catadioptric System

In general, undistorted views cannot be computed from
images acquired by a general non–central camera models
(without any additional constraint). As mentioned by



12

GAUSS:
MQ:

RED GREEN BLUE MAGENTA
0.71686 0.78906 0.80757 0.73794
0.34631 0.44775 0.4288 0.4274

(a)

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

 

 

Calibration Points
Control Points
Results Points

(b)

-400 -200 0 200 400 600 800 1000 1200 1400 1600
-500

0

500

-4200

-4000

-3800

-3600

-3400

-3200

-3000

-2800

-2600

 

 

Calibration Points
Estimated Lines

(c)

GAUSS:
MQ:

RED GREEN BLUE MAGENTA
2.3775 2.4179 0.90933 1.0673
1.3424 1.1416 0.8852 1.1823

(d)

100 200 300 400 500 600 700 800 900 1000 1100

200

300

400

500

600

700

 

 

Calibration Points
Control Points
Results Points

(e)

-500 0 500 1000 1500
-500

0

500

1000

-4200

-4000

-3800

-3600

-3400

-3200

-3000

-2800

-2600

-2400

-2200
 

 

Calibration Points
Estimated Lines

(f)

GAUSS:

MQ:

RED GREEN BLUE MAGENTA

0.68138 0.27322 1.5249 2.843

1.0979 0.36503 2.2777 1.5749

(g)

200 400 600 800 1000 1200

100

200

300

400

500

600

700
 

 

Calibration Points
Control Points
Results Points

(h)

-1000-500050010001500

0

500

1000

-4000

-3500

-3000

-2500

-2000

 

 

Calibration Points
Estimated Lines

(i)

Fig. 7. Results with real images, obtained using the method described for three types of camera models: perspective

camera (a), catadioptric system with spherical mirror (d) and catadioptric system with two planar mirrors (g). Yellow

points in (b), (e) and (h) are the set of image coordinates {xi} and yellow points in (c), (f) and (i) are the corresponding

set of world points {pi}, used in the calibration method. Red squares in the 2D plot and the red rays in the 3D plot are

the a subset of
{
yi 7→ l̂i

}
obtained with multi–quadrics RBF. Green points in (b), (e) and (h), are the corresponding

set of control points used in the calibration.

Swaminathan et al. at [40], obtaining undistorted images
from general non-central systems requires the knowl-
edge of the scene structure.

Using the approach proposed by Swaminathan et
al.(and the knowledge of the scene structure) we per-
formed a new experiment to estimate undistorted im-
ages from the non–central catadioptric camera using a
spherical mirror.

We used the same calibration process described in Sec-
tion 5.3. We know position of the seventeen chess boards

and use sixteen of these chessboard positions to calibrate
the camera model. We then obtained the undistorted
image of the 17th plane. Using the knowledge of the
position of the plane not used in the calibration, and
its image, the undistorted image was computed.

Using a virtual perspective camera (located at (0, 0, 0)),
we generated the undistorted image. The results are
presented in Figure 9. As it can be seen from Figure 9(a)
and Figure 9(b) the curved lines in the distorted image
are mapped into straight line in the undistorted image.
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Fig. 8. In Figure (a), we display the set-up used to acquire the images of the data set. The goal is the calibration

of an imaging system that views a scene through a water-filled glass tank. An example of an image acquired by this

imaging system is shown in Figure (b). A planar chess board was used. The data set is made up by the coordinates

of the images of the points corresponding to the intersections of the chess board edges (seen through the tank). An

example of the results is shown in Figure (c). In yellow we show all the 3D points used in the calibration procedure. In

blue we show the 3D points on the which the estimated lines must be incident. The estimated lines are shown in red.

The units in Figure (c) are millimeters.

6 CONCLUSIONS

6.1 Discussion

The experiments and results with synthetic data were
specially relevant for the goals of this paper. They were
particularly important to evaluate the effect of the num-
ber of control points as well as to evaluate the sensitivity
of the method to the noise, by means of a fully specified
data set.

Considering the experimental results obtained without
noise Figure 3, those obtained using gaussian RBF are
slightly better than those obtained using multi–quadrics.
However, multi–quadrics RBF tend to be less sensitive
to the image scale variation. The experimental results
also show that the inclusion of the coordinate normaliza-
tion procedure (Section 4.3.3) tends to consistently yield
better results, as expected. When noise is added to the
synthetic data, and as expected, the use the least-squares
estimates yields better results than the ones obtained
applying the theoretical condition N = 2P .

(a) (b)

Fig. 9. In Figure (a) we show the original image obtained

from a catadioptric camera system, made up by a spheri-

cal mirror. In Figure (b), we show the undistorted image.

In some cases the calibration is affected with errors
that go up to 60 units. These are extreme cases and we
discuss the reasons why they occur. In one case (Figure 3)
these errors correspond to results obtained with a very
small number of control points 10. Note that this number
of control points is small for the specific camera model
(for other systems it might be adequate). Therefore in
that case the reason for the error value is the small
number of control points. In the case of Figure 4 these
values are obtained for levels of noise with standard
deviations which go up to 20 units. These are presented
to show the performance of the model in very special
(and unrealistic) conditions.

Experiments with synthetic data also show that this
method can be applied to the calibration of non–smooth
camera models if the discontinuities on the data are
limited.

To conclude the synthetic experiments, we perform
an experiment where (with the appropriate choises for
the interpolant paramenters) we can calibrate a camera
model using world points in a single surface, Figure 6.
These experiments show that the method can be used
without explicitly accounting for the collinearity con-
straints.

Experimental results with real data–sets were also
performed to evaluate the behavior of the method under
real conditions. The results shown in Figures 7 and 8
show the expected behavior of the 3D line estimates ob-
tained under the assumption of a Smooth Camera Model.

In addition, we also show distortion correction results
for a non–central catadioptric camera, using the pro-
posed camera model.

6.2 Closure

The proposed Smooth Camera Model and calibration pro-
cedure can be used to calibrate complex smooth camera
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models, namely in the case of cameras for which no
analytical model exists. Despite the fact that this model
is for smooth imaging systems, it can also be used also
in special cases of non–smooth imaging systems.

This approach can model a camera with significantly
less parameters than the discrete General Camera Model.
For the model described in this paper the number of
parameters does not depend on the image size. Instead
of the 7NM parameters, for an M ×N image, required
by the discrete General Camera Model, this approach only
requires 6 (P + 3) for P control points.

The calibration procedure only requires the 3D coor-
dinates of a single world point for each image point,
whereas previous approaches require two or more 3D
points for each image point. On the other hand, the
calibration parameters which are estimated for a sub-set
of image points are implicitly generalized for all image
pixels, which constitutes an important advantage of this
method.
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