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Appendix: Mathematical Derivations
Pedro Miraldo and Helder Araujo

✦

APPENDIX

AFFINE TRANSFORMATION TO THE LINE SPACE

In this section we derive the affine transformation for
the line space of coordinates. Let us consider lines repre-
sented in Plücker coordinates. The line coordinates before
the application of the affine transformation is denoted
as l(1)R =

(
d(1),m(1)

)
and after the application of the

transformation as l(2)R =
(
d(2),m(2)

)
. From the definition

of Pücker coordinates [1], one has

d(1) = p
(1)
2 − p

(1)
1 and m(1) = −p

(1)
2 × p

(1)
1 (1)

for any two points p
(1)
1 ,p

(1)
2 ∈ R

3 (regular coordinates)
that belong to the line, before the application of the affine
transformation.

Using the affine parameters {B,b, b}, a point p
(2)
i

after
the application of the affine transformation is given by

p
(2)
i

= b−1
(
Bp

(1)
i

+ b

)
(2)

where B ∈ R
3×3 and b ∈ R

3. From the definition of
Pücker coordinates – Equation (1), we derive the following
equations

d(2) = b−1
(
Bp

(1)
2 + b

)
− b−1

(
Bp

(1)
1 + b

)
= b−1Bd(1) (3)

and

m(2) = −b−1
(
Bp

(1)
2 + b

)
× b−1

(
Bp

(1)
1 + b

)

= −b−2
(
Bp

(1)
2 ×Bp

(1)
1 + b×

(
B

(
p
(1)
1 − p

(1)
2

)))
.

(4)

From the properties of the cross product, one has
(
Bp

(1)
2

)
×(

Bp
(1)
1

)
= det (B)B−T

(
p
(1)
2 × p

(1)
1

)
. Using this result and

from Equation (1), one obtains

m(2) = −b−2
(
−det (B)B−Tm(1) − b×Bd(1)

)
. (5)

Using the results derived in Equations (3) and (5), we
formalize the following Proposition.

Proposition 1 Considering a line l(1)R =
(
d(1),m(1)

)
⊂ R

6,
represented in Plücker coordinates, and an affine transforma-
tion {B,b, b} that verifies Equation (2). The line coordinates
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l(2)R =
(
d(2),m(2)

)
⊂ R

6 after the application of the affine
transformation are given by

l(2)R =

[
B 0

b−1b̂B b−1det (B)B−T

]

︸ ︷︷ ︸
E

l(1). (6)

Note that b 6= 0 and matrix B is a non–singular matrix.
As a result, matrix E is invertible and l(1) can be estimated
such that l(1)R = E−1l(2).

In the case of an Euclidean transformation, one has B =
R ∈ SO (3), b = t ∈ R

3 and b = 1. Thus, we write the
following Result.

Results 1 Let us consider a line l(1)R =
(
d(1),m(1)

)
⊂ R

6,
represented in Plücker coordinates, and a rigid transformation
{R, t} where R ∈ SO (3) and t ∈ R

3. The line coordinates
l(2)R =

(
d(2),m(2)

)
⊂ R

6 after the application of the transfor-
mation are given by

l(2)R =

[
R 0

t̂R R

]
l(1). (7)

We note that this particular case was derived in [2], [3].

GEOMETRIC DISTANCE BETWEEN A 3D LINE AND

A 3D POINT

In this subsection, we derive a geometric distance between
a line in the world l ∈ L

3 and a non-incident 3D point
p ∈ P

3. Let us consider that the line is represented in Plücker
coordinates lR = (d,m) ⊂ R

6, where d ∈ R
3 and m ∈ R

3

represents the moment and direction of the line respectively.
The distance between a line and a point does not change

after a rigid transformation. As a result, instead of esti-
mating the distance in the world coordinate system, the
distance can be computed in any other coordinate system.

Let us consider a rigid transformation defined by the
translation t ∈ R

3 and rotation R ∈ SO (3). From Result 1
– Section A, the line l(1)R =

(
d(1),m(1)

)
can be represented

in the new coordinate system l(2)R =
(
d(2),m(2)

)
, using

l(2)R =
(
Rd(1),Rm(1) + t̂Rd(1)

)
. (8)

Let us consider a generic line in the world coordinate
system l(1) ∈ L

3 and a non–incident point p ∈ P
3. The

coordinates of the same line can be represented in a new
coordinate system centered at p, setting t = −p and R = I,
as

l(2)R =
(
d(2),m(2)

)
=

(
d(1),m(1) − p̂d(1)

)
. (9)
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Fig. 1. In this figure we display the representation of a line

l(1) in the coordinate system centered at point p. The plane

π is defined by l(2) and the origin of the coordinate system.

In this coordinate system, a plane Π
.
= l(2) ∪ 0, spanned

by the line and the origin of the coordinate system, can be
defined. In this coordinate system, any point q incident on
the line l(2) verifies

q = (q · ed(2))︸ ︷︷ ︸
q
−

ed(2) + (q · eξ)︸ ︷︷ ︸
q+

eξ (10)

where ed(2) and eξ are the orthogonal basis for the subspace
Π. The representation of this basis is show in Figure 1.

Since q+ is constant, vector q has the minimum norm
when q− = 0 or q · ed(2) = 0 and, therefore, the distance
between the line and the point can be defined as δ (l,p) =
||q||, such that q · ed(2) = 0.

From the definition of moment of the line, we have
m(2) = q × d(2) for any q that belong to the line, which
means that

m(2) = ||q||
∣∣∣
∣∣∣d(2)

∣∣∣
∣∣∣ sin

(
Θ
(
q,d(2)

))
eξ × ed(2) (11)

where Θ(q,d) is the angle between the vector q and d.
Note that the aim is to find q that verifies the constraint
q · ed(2) = 0, which implies sin (Θ (q,d)) = 1 and, as a
result, ∣∣∣

∣∣∣m(2)
∣∣∣
∣∣∣ = ||q||

∣∣∣
∣∣∣d(2)

∣∣∣
∣∣∣ . (12)

Without loss of generality, let us consider that l(1) =(
d(1),m(1)

)
where

∣∣∣∣d(1)
∣∣∣∣ = 1 which, from Equation (9),

implies that
∣∣∣∣d(2)

∣∣∣∣ = 1. The distance between a line and a
point can be defined as

δ (l,p) = ||q|| =
∣∣∣
∣∣∣m(2)

∣∣∣
∣∣∣ . (13)

To conclude, using the Equations (13) and (9), we derive
the following Proposition

Proposition 2 For a line lR = (d,m) ⊂ R
6, represented in

Plücker coordinates, and a non-incident 3D point p ∈ R
3, the

geometric distance between l and p are given by δ (l,p), such
that

δ (l,p) =

∣∣∣∣[ −p̂ I
]
l(1)

∣∣∣∣
∣∣∣∣d(1)

∣∣∣∣ . (14)
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