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APPENDIX
AFFINE TRANSFORMATION TO THE LINE SPACE

In this section we derive the affine transformation for
the line space of coordinates. Let us consider lines repre-
sented in Pliicker coordinates. The line coordinates before
the application of the affine transformation is denoted
as IWR = (d®,m®) and after the application of the
transformation as 1?R = (d®,m?). From the definition
of Piicker coordinates [1], one has

a0 =~ p® and mD = p® xpl (1)
for any two points pgl),p(zl) € R? (regular coordinates)

that belong to the line, before the application of the affine
transformation.

Using the affine parameters {B, b, b}, a point p§2) after
the application of the affine transformation is given by

pl” =7 (Bp{" +b) @

where B € R3*3 and b € R3. From the definition of
Piicker coordinates — Equation (1), we derive the following
equations

d® —p1 (Bpg” + b) oyt (Bpg” + b) —p'BAY (3)

and

2)

m® = _p1 Bpél)er)xb*l (Bp§1)+b

= ot (B Bl b (B (60l ).

)
From the properties of the cross product, one has (Bpél)) X
(Bpgl)) =det(B)B~7T (p(;) X p§1)). Using this result and
from Equation (1), one obtains

m® = _p2 (—det (B)B"m® — b x Bd<1>) G
Using the results derived in Equations (3) and (5), we
formalize the following Proposition.

Proposition 1 Considering a line 1YR = (4, mM) c RS,
represented in Pliicker coordinates, and an affine transforma-
tion {B,b,b} that verifies Equation (2). The line coordinates
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1R = (d@,m®) C RS after the application of the affine
transformation are given by

B 0
b-'bB b~ ldet (B)B

E

1R = 1) (6)

Note that b # 0 and matrix B is a non-singular matrix.
As a result, matrix E is invertible and 1(!) can be estimated
such that IVR = E-11(2),

In the case of an Euclidean transformation, one has B =
R € SO@B3),b=tcRand b = 1. Thus, we write the
following Result.

Results 1 Let us consider a line IVR = (d), m®M) c RS,
represented in Pliicker coordinates, and a rigid transformation
{R,t} where R € SO (3) and t € R>. The line coordinates
13R = (d®,m®) C R® after the application of the transfor-
mation are given by

R 0
(OR — [ noe ] ) 7

We note that this particular case was derived in [2], [3].

GEOMETRIC DISTANCE BETWEEN A 3D LINE AND
A 3D POINT

In this subsection, we derive a geometric distance between
a line in the world 1 € L? and a non-incident 3D point
p € P3. Let us consider that the line is represented in Pliicker
coordinates IR = (d,m) C R®, where d € R? and m € R3
represents the moment and direction of the line respectively.
The distance between a line and a point does not change
after a rigid transformation. As a result, instead of esti-
mating the distance in the world coordinate system, the
distance can be computed in any other coordinate system.
Let us consider a rigid transformation defined by the
translation t € R3 and rotation R € SO (3). From Result 1
— Section A, the line IVR = (d), m™)) can be represented
in the new coordinate system 1?R = (d®?, m?), using

12R = (Rd<1>, RmV) +€Rd<1>) . )

Let us consider a generic line in the world coordinate
system 1) € L? and a non-incident point p € P?. The
coordinates of the same line can be represented in a new
coordinate system centered at p, settingt = —pand R =1,

1R = (d@),m(z)) — (d<1),m<1> _ ﬁdu)) , )



1@ = (d(z), m(2>)

Q"

€4(2)

Fig. 1. In this figure we display the representation of a line
1) in the coordinate system centered at point p. The plane
7 is defined by 1(2) and the origin of the coordinate system.

In this coordinate system, a plane IT = 12 uyo, spanned
by the line and the origin of the coordinate system, can be
defined. In this coordinate system, any point q incident on
the line 1 verifies

q4=(q-eq)eqe +(q-eg)ee (10)
SN—— ——

a- a+

where eq2) and e are the orthogonal basis for the subspace
IT. The representation of this basis is show in Figure 1.

Since q. is constant, vector q has the minimum norm
when gq_ = 0 or q - eqy = 0 and, therefore, the distance
between the line and the point can be defined as ¢ (1, p) =
lla||, such that q - eqz) = 0.

From the definition of moment of the line, we have
m® = g x d? for any q that belong to the line, which
means that

m® = ||q| Hd(Q)H sin (@ (q, d(2)>) eg X eqe

where © (q,d) is the angle between the vector q and d.
Note that the aim is to find q that verifies the constraint
q - eq» = 0, which implies sin(0(q,d)) = 1 and, as a
result,

(11)

[} = 0[] 2

Without loss of generality, let us consider that 1) =
(d®, mW) where |[dM|| = 1 which, from Equation (9),
implies that ||[d(?|| = 1. The distance between a line and a
point can be defined as

5 (1,p) = llall = ||m®||.

To conclude, using the Equations (13) and (9), we derive
the following Proposition

(13)

Proposition 2 For a line IR = (d,m) C RS, represented in
Pliicker coordinates, and a non-incident 3D point p € R3, the
geometric distance between 1 and p are given by ¢ (1,p), such

that N
[ -p T [1V]|

5(l,p)= Hd(l)H

(14)
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