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Abstract

When considering non-central imaging devices, the computation of the relative pose requires the estimation of the
rotation and translation that transform the 3D lines from one coordinate system to the second. In most of the state-of-
the-art methods, this transformation is estimated by the computing a 6× 6 matrix, known as the Generalized Essential
Matrix. To allow a better understanding of this matrix, we derive some properties associated with its singular value
decomposition.
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1. Introduction1

Relative pose estimation is one of the main problems in computer vision, which has been studied for more than a2

century [1]. The goal is to estimate the rigid transformation between two cameras (or the same camera in two different3

positions) using matching between pixels that are images of the same 3D point in the world. The cameras (or camera)4

are considered calibrated. As a result, for each image pixel, we know the corresponding 3D projection line in the5

world. Thus, by computing the 3D projection lines associated to each match of pixels, the problem can be seen as6

finding the rotation and translation that align the 3D projection lines to ensure that they intersect in the world, as7

shown in Fig. 1. One of the most important applications is its use in robotics navigation, in methods such as visual8

odometry [2].9

When considering conventional perspective cameras there are several solutions for the relative pose. We note10

that there are minimal (5-point algorithms) and non-minimal solutions. One of the goals of minimal solutions is to11

allow the determination of outliers from a large data-set, to build a robust data-set. On the other hand, the goal of12

non-minimal solutions is to estimate directly an accurate solution, from a given data-set. A common procedure is to13

run first the minimal solutions using RANSAC [3, 4], followed by iterative refinement, using non-minimal methods.14

In most of the approaches, authors used the essential matrix [5]. Let us consider a rotation matrix R ∈ SO (3) and a15

translation vector t ∈ R3, from the epipolar geometry one has16

d(2)
i

T
s (t) R︸︷︷︸

E

d(1)
i = 0, where s (t) ⊂ R3×3 .

=

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 , (1)

where d(1)
i and d(2)

i denote the inverse projection of two pixels that are the images of the same 3D points with distinct17

cameras with different external parameteres–see Fig. 1(a). Matrix E ⊂ R3×3 is known as the essential matrix. Some18

properties associated with the singular value decomposition of E were derived in [6, 7, 8]:19

Proposition 1: The essential matrix E is such that EET only depends on the translation vector t and the singular20

value decomposition of EET has one singular value equal to zero and other two singular values are equal.21
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Based on properties of its singular value decomposition, one can define the following constraints:22

Proposition 2: E is an essential matrix (which means that it can be decomposed into rotation and translation) if and23

only if24

det (E) = 0 and
1
2

tr
(
EET

)2
− tr

((
EET

)2
)

= 0.

In addition, the following constraint can also be derived25

1
2

tr
(
EET

)
E − EET E = 0.

These constraints (which ensure that E can be decomposed into rotation and translation in the way shown in26

(1)) were used in most of the algorithms for the minimal 5-point relative pose of perspective cameras, for example27

[9, 10, 11, 12]. We note that other solutions (that do not explicitly use these properties) were derived, for example28

[13].29

However, and mainly to get wide field of views, new imaging devices have been developed – for example multiple30

perspective camera systems, catadioptric cameras or cameras with complex optical systems. In most of these cases,31

camera models are non-central. As a result, all of these methods for relative pose can not be used and new algorithms32

have to be developed.33

To deal with general cases (central and non-central camera models) Pless [14] proposed the concept of the gener-34

alized epipolar constraint. He considered that a camera can be represented by the general camera model (proposed by35

Grossberg and Nayar at [15]), which basically assumes that all pixels are mapped into 3D straight lines in the world.36

Similarly to the case described in the first paragraph, the match of image pixels is mapped into 3D straight lines and37

the goal is to estimate the rigid transformation that aligns these 3D lines to ensure that they intersect. To represent38

lines, Pless used Plücker coordinates – a line is represented by l .= (d,m) ⊂ R6 [16] where d,m ∈ R3 are the direction39

and moment of the lines respectively. Under this framework, Pless defined the generalized epipolar constraint as:40

l(2)
i

T
(

s (t) R R
R 0

)
︸            ︷︷            ︸

E⊂R6×6

l(1)
i = 0, (2)

where E is denoted as generalized essential matrix. From (2), one can see that 17 corresponding 3D lines can be used41

to compute E linearly. Sturm at [17] studied the properties of the generalized essential matrix when the underlying42

camera model belongs to central, axial and xslit cameras, which included the minimum number of correspondences43

between projection rays required for computing essential matrices using linear equations, for each case. Li et al. at44

[18] show that despite the rank deficiency in generalized essential matrix for different camera models, it is possible45

to compute the rotation and translation between two views for different configurations and demonstrated real results46

on multi-camera configurations. Kim and Kanade at [19] decomposed the generalized essential matrix to study the47

degenerate cases for specific type of ray geometry.48

To conclude, we note that several algorithms for the relative pose under the framework of generalized camera49

models have been developed: Lhuillier [20] proposed a generic structure-from-motion method based on an angular50

error; Schweighofer and Pinz [21] proposed a globally convergent solution to the structure and motion estimation;51

and Stewenius et al. [10] proposed a solution for the minimal 6-point relative pose problem.52

In the case of central cameras the essential matrix has been extensively used to estimate relative pose. The53

generalized epipolar constraint has been less frequently employed to estimate the relative pose. One of the reasons54

may be linked to the fact the generalized essential matrix has not been analyzed with the same level of detail as the55

essential matrix for central cameras. One of the goals of this paper is to derive some properties of the generalized56

essential matrix allowing a deeper understanding of its structure. In particular we derive some properties of the57

singular value decomposition of E (which can be compared to the result of Proposition 1 in the case of E) that should58

be helpful for applications of the generalized essential matrix in relative pose applications (specially for the minimal59

case). We start by considering the following proposition:60
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Figure 1: Representation of the relative pose problem for both central (a) and non-central cases (b).

Proposition 3: Matrix E is full-rank and its determinant is det (E) = 1.61

Proof. Since E is a block triangular matrix and from [22], rank (E) = rank (R)+rank (R) and since R ∈ SO (3) implies62

rank (R) = 3, one can conclude that rank (E) = 6 and that the matrix has full-rank. Again, since E is a block triangular63

matrix we may write det (E) = det (R) det (R) and, since R ∈ SO (3) implies det (R) = 1, det (E) = 1, proving the64

proposition. �65

Let us consider the decomposition denoted as66

E
.
= UΣVT , where U,V ∈ SO (6) which implies UUT = VVT = I (3)

and Σ is a six-dimensional diagonal matrix. For notation, let us consider the representation of the Singular Value67

Decomposition, such that:68

EV = UΣ ⇒ Evi = σiui, ∀i = 1, . . . , 6, (4)

where: σi, vi and ui are called the ith singular values, right and left singular vectors respectively. ui and vi are the69

columns of U and V.70

The main contributions of the paper are derived in the following section. We propose three theorems, namely:71

the eigen decomposition of EET (Theorem 1), the singular value decomposition of E (Theorem 2), and the sufficient72

conditions to ensure that a singular value decomposition represents an essential matrix (Theorem 3).73

2. Singular Value Decomposition of E74

From (3), let us consider the following results:75

EE
T = UΣ VT V︸︷︷︸

I

ΣUT = UΣ2UT and E
T
E = VΣ UT U︸︷︷︸

I

ΣVT = VΣ2VT , (5)

where Σ2 is a diagonal matrix with elements σ2
i . Taking into account that76

R ∈ SO (3)⇒ RT R = I and s (t)T = −s (t) , (6)

we get77

EE
T =

 −s (t) RRT s (t) + RRT s (t) RRT

−RRT s (t) RRT

 =

 −s (t) s (t) + I s (t)
−s (t) I

 (7)
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and78

E
T
E =

 RT R − RT s (t) s (t) R −RT s (t) R
RT s (t) R RT R

 =

 I − RT s (t) s (t) R −RT s (t) R
RT s (t) R I

 (8)

As a result we define the following proposition:79

Proposition 4: The matrix E, in (2), is such that EET depends only on the translation vector t.80

Proof. This proposition results from a simple analysis of (7). �81

2.1. Eigen Decomposition of EET
82

We will use the result of Proposition 4 to start our derivations. Let us consider the eigen decomposition of the83

matrix EET such that84

EE
T ui = σ2

i ui. (9)

Proposition 5: Matrix EET has three eigenvalues which are equal respectively to σ2
+, 1 and

(
σ2

+

)−1
, each of which85

has algebraic multiplicity of two.86

Proof. To get the respective eigenvalues, we consider the characteristic polynomial of EET , which corresponds to87

det
(
EE

T
− σ2I

)
= 0. Using the fact that det

([
A B
C D

])
= det (D) det

(
A − BD−1C

)
, if D is invertible, one can write88

det
(
EE

T
− σ2I

)
= det (ξI)︸  ︷︷  ︸

ξ3

det
(
−s (t)2 + ξI + ξ−1s (t)2

)
where ξ =

(
−σ2 + 1

)
(10)

which can be rewritten as89

det
(
EE

T
− σ2I

)
= ξ3det

(
ξ−1

(
ξ2I − ξs (t)2 + s (t)2

))
= ��ξ

3
�
�ξ−3det

( (
ξ2I − ξs (t)2 + s (t)2

)︸                     ︷︷                     ︸
M∈R3×3

)
(11)

As a result, since we want det
(
EE

T
− σ2I

)
= 0, the eigenvalues can be easily found by computing det (M) = 0 which

gives

det
(
EE

T
− σ2I

)
= 0 =⇒ ξ2

ξ −
− tT t

2
−

√(
tT t

)2
+ 4tT t

2

︸                           ︷︷                           ︸
k+


2 ξ −

− tT t
2

+

√(
tT t

)2
+ 4tT t

2

︸                           ︷︷                           ︸
k−


2

= 0

≡
(
σ2 − 1

)2 (
σ2 − (1 − k+)

)2 (
σ2 − (1 − k−)

)2
=

(
σ2 − 1

)2 (
σ2 − σ2

+

)2 (
σ2 − σ2

−

)2
= 0 (12)

where90

σ2
+ = 1 +

tT t
2

+

√(
tT t

)2
+ 4tT t

2
and σ2

− = 1 +
tT t
2
−

√(
tT t

)2
+ 4tT t

2
. (13)

From (12), one can conclude the set
{
1, 1, σ2

+, σ
2
+, σ

2
−, σ

2
−

}
defines the eigenvalues of EET . Moreover, since each of the91

eigenvalues is repeated twice, we can write σ2
+, 1 and σ2

− are the respective eigenvalues, each of them has an algebraic92

multiplicity of two.93
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ex ≡ t/tT t

ey

ez

φ

Figure 2: Graphical representation of the basis ey and ez as a function of the translation vector t. As we can see from the figure, there is a degree
of freedom (angle φ) associated to the choice of both ey and ez.

Let us now consider the following derivation

σ2
+σ

2
− = 1 +

tT t
2 �

���
����

−

√(
tT t

)2
+ 4tT t

2
+

tT t
2 �

���
����

+

√(
tT t

)2
+ 4tT t

2
+

(
tT t

)2

4

���������

+
tT t
2

√(
tT t

)2
+ 4tT t

2 ���������

−
tT t
2

√(
tT t

)2
+ 4tT t

2
+ −

√(
tT t

)2
+ 4tT t

2

√(
tT t

)2
+ 4tT t

2
, (14)

and, as a result,94

σ2
+σ

2
− = 1

�
��+
tT t
2 �

��+
tT t
2 �

�
��

+

(
tT t

)2

4 �
�

��

−

(
tT t

)2

4 �
�
�

+
4tT t

4
⇒ σ2

+σ
2
− = 1, for any tT t. (15)

With this result, we prove that σ2
− =

(
σ2

+

)−1
, which means that the eigenvalues of EET are σ2

+, 1 and
(
σ2

+

)−1
, conclud-95

ing the proof of the proposition. �96

Let us now consider the computation of the eigenvectors of EET . For that purpose, let us consider the basis vectors97

ey and ez as shown in Fig. 2. The derivation of each of the eigenvectors and of the complete eigendecomposition of98

EE
T is shown in the following proposition and theorem:99

Proposition 6: For each eigenvalue defined in Proposition 5, we have the following associated eigenvectors:100

• σ2
+ associated with u1 =

(
ez, ζ+ey

)
and u2 =

(
−ey, ζ+ez

)
;101

• 1 associated with u3 = (0, t) and u4 = (t, 0); and102

• σ2
+ associated with u5 =

(
ez, ζ−ey

)
, and u6 =

(
−ey, ζ−ez

)
,103

for some scalars ζ+ and ζ− and basis ey and ey as shown in Fig. 2.104

Proof. Let us consider the basis vectors ey and ez as shown in Fig. 2. From their definition, one can write105

s (t) ey =
√

tT tez, s (t) ez = −
√

tT tey, s (t)2 ey = −tT tey, and s (t)2 ez = −tT tez. (16)
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Let us define106

ζ+ =
σ2

+ − 1 − tT t
√

tT t
= −

√
tT t
2

+

√(
tT t

)2
+ 4tT t

2
√

tT t
and ζ− =

σ2
− − 1 − tT t
√

tT t
= −

√
tT t
2
−

√(
tT t

)2
+ 4tT t

2
√

tT t
. (17)

To prove the proposition, we have to ensure that EET u1 = σ2
+u1, EET u2 = σ2

+u2, EET u3 = u3, EET u4 = u4,
EE

T u5 = σ2
−u5 and EET u6 = σ2

−u6. From (16) and (17), one can derive −s (t)2 + I s (t)
−s (t) I

  ez

ζ+ey

 =


(
tT t + ζ+

√
tT t + 1

)
ez(√

tT t + ζ+

)
ey

 = σ2
+

 ez

ζ+ey

 =⇒ EE
T u1 = σ2

+u1, (18) −s (t)2 + I s (t)
−s (t) I

  −ey

ζ+ez

 =σ2
+

 −ey

ζ+ez

 =⇒ EE
T u2 = σ2

+u2. (19)

More easily, one can derive  −s (t)2 + I s (t)
−s (t) I

  0
t

 =

 0
t

 =⇒ EE
T u3 = u3 (20) −s (t)2 + I s (t)

−s (t) I

  t
0

 =

 t
0

 =⇒ EE
T u4 = u4 (21)

To conclude, −s (t)2 + I s (t)
−s (t) I

  ez

ζ−ey

 =


(
tT t + ζ−

√
tT t + 1

)
ez(√

tT t + ζ−
)

ey

 = σ2
−

 ez

ζ−ey

 =⇒ EE
T u5 = σ2

−u5 (22) −s (t)2 + I s (t)
−s (t) I

  −ey

ζ−ez

 =σ2
−

 −ey

ζ−ez

 =⇒ EE
T u6 = σ2

−u6 (23)

107

Since the eigenvectors ui form an orthogonal basis in R6, we have to ensure that uT
i u j = 0, for all i , j. Since

tT ey = 0, tT ez = 0, eT
y ez = 0, one can easily verify that uT

1 u2 = uT
1 u3 = uT

1 u4 = uT
1 u6 = uT

2 u3 = uT
2 u4 = uT

2 u5 =

uT
3 u4 = uT

3 u5 = uT
3 u6 = uT

4 u5 = uT
4 u6 = uT

5 u6 = 0. As a result, to conclude the proof, we only have to ensure that
uT

1 u5 = 0 and uT
2 u6 = 0. Let us consider the first case. From (17), one can derive

uT
1 u5 =

(
ez ζ+ey

) ( ez
ζ−ey

)
= 1 + ζ+ζ− =

= 1 +
tT t
4 ����������

+

√
tT t
2

√(
tT t

)2
+ 4tT t

2
√

tT t ����������

−

√
tT t
2

√(
tT t

)2
+ 4tT t

2
√

tT t
−

(
tT t

)2
+ 4tT t

4tT t
= �1

�
��+
tT t
4 �

��−
tT t
4
��−1 =⇒ uT

1 u5 = 0. (24)

and108

uT
2 u6 =

(
−ey ζ+ez

) ( −ey
ζ−ez

)
= 1 + ζ+ζ− =⇒ uT

2 u6 = 0, (25)

concluding the proof of the proposition. �109

Now, using the previous propositions, we can define the complete eigen decomposition of EET .110

Theorem 1: The eigen decomposition of the matrix EET is given by EET = UΣ2UT , where U and Σ2 are U =111 (
u1√
uT

1 u1
, u2√

uT
2 u2
, . . . , u6√

uT
6 u6
,

)
,112

u1√
uT

1 u1
=

(
1√
1+ζ2

+

ez,
ζ+√
1+ζ2

+

ey

)
u2√
uT

2 u2
=

(
−1√
1+ζ2

+

ey,
ζ+√
1+ζ2

+

ez

)
u3√
uT

3 u3
=

(
0, t
√

tT t

)
u4√
uT

4 u4
=

(
t
√

tT t
, 0

)
u5√
uT

5 u5
=

(
1√
1+ζ2

−

ez,
ζ−√
1+ζ2

−

ey

)
u6√
uT

6 u6
=

(
−1√
1+ζ2

−

ey,
ζ−√
1+ζ2

−

ez

) (26)
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and113

Σ2 =



σ2
+ 0 0 0 0 0

0 σ2
+ 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0
(
σ2

+

)−1
0

0 0 0 0 0
(
σ2

+

)−1


. (27)

To conclude, σ2
+ > 1 >

(
σ2

+

)−1
.114

Proof. The proof of this theorem results from Propositions 5 and 6 by stacking the eigenvalues σ2
i and eigenvectors115

ui. The eigenvector may be defined up to a scale factor. However, it is usual to consider that UUT = I. In addition, it116

is also common to consider the eigenvalues in decreasing order. Thus, for the proof of this theorem, we have to verify117

the following conditions:118

• The columns of U are normalized (unit vectors); and119

• The eigenvalues are organized in decreasing order σ2
+ > 1 >

(
σ2

+

)−1
.120

To ensure that the eigenvectors have unit norm, instead of considering ui, we have used ui√
uT

i ui
. Deriving the expres-121

sions for all i, we get the result shown in (26).122

To conclude the proof, we have to ensure that σ2
+ > 1 >

(
σ2

+

)−1
, which is the same as to prove that σ2

+ >
(
σ2

+

)−1
.123

Let us rewrite σ2
+ and σ2

− (derived in (13)) as124

σ2
+ = µ1 + µ2 and σ2

− = µ1 − µ2, (28)

where125

µ1 = 1 +
tT t
2

and µ2 =

√(
tT t

)2
+ 4tT t

2
. (29)

Since tT t > 0, one has µ1 > 0 and µ2 > 0 and, from (28),126

σ2
+ > σ

2
− and, since σ2

− =
(
σ2

+

)−1
, σ2

+ >
(
σ2

+

)−1
, (30)

concluding the proof of the theorem. �127

From the previous derivations, one can define the following result:128

Proposition 7: For any σ2
+ ≥ 1 and Γ ∈ SO (3), the diagonal matrix Σ and matrix U, defined as129

Σ2 =



σ2
+ 0 0 0 0 0

0 σ2
+ 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 σ−2

+ 0
0 0 0 0 0 σ−2

+


and U =

(
Γ 0
0 Γ

)


0 0 0 1 0 0
0 −σ(1)

+ 0 0 0 −σ(2)
+

σ(1)
+ 0 0 0 σ(2)

+ 0
0 0 1 0 0 0
σ(2)

+ 0 0 0 −σ(1)
+ 0

0 σ(2)
+ 0 0 0 −σ(1)

+

︸                                               ︷︷                                               ︸
K∈R6×6

, (31)

define the eigendecomposition of EET for some generalized essential matrix E, where σ(1)
+ =

√
σ2

+

1+σ2
+

and σ(2)
+ =130 √

1
1+σ2

+

. To conclude, one can define tT t =
(σ2

+−1)2

σ2
+

and, as a result, t =
σ2

+−1
σ+
γ1, where γ1 is the first column of Γ.131
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Proof. From the previous Theorem, one can see that Σ2 depends only on one parameter. Let us consider random132

values for σ2
+, from (13) one can see that133

tT t =

(
σ2

+ − 1
)2

σ2
+

. (32)

Note that, also from (13), σ2
+ must be bigger than one. Let us now consider ζ+. Replacing tT t in (17) using (32), one134

can derive ζ+ = σ−1
+ and since ζ− = −ζ−1

+ (see (24)), ζ− = σ+. To conclude, the basis ex, ey and ez can be defined by135

a rotation matrix Γ ∈ SO (3). Using these results on (26), we can derive U as is shown in (31), which means that the136

eigen decomposition of EET is as shown in (31), for some Γ ∈ SO (3) and σ2
+ ≥ 1.137

Since ex = t
√

tT t
is equal to the first column of Γ and from (32), one can see that138

t =

√√√(
σ2

+ − 1
)2

σ2
+

γ1 =
σ2

+ − 1
σ+

γ1, (33)

concluding the proof of the proposition. �139

In the next section, we use the Eigen Decomposition of EET (Theorem 1), to derive the Singular Value Decompo-140

sition of E.141

2.2. Singular Value Decomposition of E142

From (3) and the derivation of (5), one can see that the singular values σi and left-singular vectors ui were derived143

in the previous section: matrix U is as shown in Theorem 1 and144

Σ =



σ+ 0 0 0 0 0
0 σ+ 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 σ−1

+ 0
0 0 0 0 0 σ−1

+


. (34)

From this result and for the complete determination of the elements of the Singular Value Decomposition, it is145

only necessary to determine the elements of matrix V. Thus, let us consider the following theorem:146

Theorem 2: The Singular Value Decomposition of E is given by E = UΣVT , where U and Σ are shown in Theorem 1
and (34), respectively, and V = (v1, v2, . . . , v6), are such that

σ+vT
1 =ET

 1√
1 + ζ2

+

ez,
ζ+√

1 + ζ2
+

ey

 =

− 1√
1 + ζ2

+

RT s (t) ez +
ζ+√

1 + ζ2
+

RT ey,
ζ+√

1 + ζ2
+

RT ez

 (35)

σ+vT
2 =ET

 −1√
1 + ζ2

+

ey,
ζ+√

1 + ζ2
+

ez

 =

 1√
1 + ζ2

+

RT s (t) ey +
ζ+√

1 + ζ2
+

RT ez,
ζ+√

1 + ζ2
+

RT ez

 (36)

vT
3 =ET

(
0,

t
√

tT t

)
=

(
0,

t
√

tT t
R
)

(37)

vT
4 =ET

(
t
√

tT t
, 0

)
=

(
t
√

tT t
R, 0

)
(38)

σ−1
+ vT

5 =ET

 1√
1 + ζ2

−

ez,
ζ−√

1 + ζ2
−

ey

 =

− 1√
1 + ζ2

−

RT s (t) ez +
ζ−√

1 + ζ2
−

RT ey,
ζ−√

1 + ζ2
−

RT ez

 (39)

σ−1
+ vT

6 =ET

 −1√
1 + ζ2

−

ey,
ζ−√

1 + ζ2
−

ez

 =

 1√
1 + ζ2

−

RT s (t) ey +
ζ−√

1 + ζ2
−

RT ez,
ζ−√

1 + ζ2
−

RT ez

 . (40)
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Proof. As we already mentioned, the only remaining unknown is matrix V. Let us consider the following derivation,147

UT
E = UT U︸︷︷︸

I

ΣVT = ΣVT , which implies ET ui = σivi, ∀i = 1, . . . , 6. (41)

The proof of the theorem is then given by a simple verification of the above condition for each vector vi. �148

Let us consider the sufficient conditions for singular value decomposition of E. Let us start by simplifying the
results of Theorem 2, using the results of Proposition 7. Using these derivations, the following result can be obtained

VT = Σ−1UT
E = Σ−1KT

(
ΓT 0
0 ΓT

) (
s (t) R R

R 0

)
= Σ−1KT

(
ΓT s (t) R ΓT R
ΓT R 0

)

=⇒ VT = Σ−1KT

 Γ̃T
ΓT

ΓT 0

︸                   ︷︷                   ︸
A∈R6×6

(
R 0
0 R

)
, where Γ̃

T
=


0 0 0
0 0 σ2

+−1
σ+

0 −
σ2

+−1
σ+

0

ΓT (42)

and K ∈ R6×6 is defined in (31). From (42), (34) and (31), one can see that A only depends on the parameters σ+ and149

Γ. Now we define the following theorem.150

Theorem 3: The parameters Σ, U and V define a singular value decomposition of a generalized essential matrix E151

if, for some σ+ ≥ 1, Γ ∈ SO (3) and ∆ ∈ SO (3), Σ is as shown in (34); U is as shown in (31); and V has the form152

VT = A
(
∆ 0
0 ∆

)
(43)

(A is derived in (42)). Moreover, one can see that, for any φ, Γ̂ defined as153

Γ̂ = Γ

 1 0 0
0 cos (φ) −sin (φ)
0 sin (φ) cos (φ)

 , (44)

gives the singular value decomposition of the same E as for Γ. Hence, the seven degrees of freedom of the constituents154

of the singular value decomposition, account, as must be, only for the six degrees of freedom of generalized essential155

matrices and thus, of their singular value decomposition. To conclude, the translation and rotation parameters are156

t =
σ2

+−1
σ+
γ1 and R = ∆, respectively.157

Proof. The first part of this proof results from Proposition 7. From this proposition, one can see that Σ and U must be158

as shown in (31) for some σ2
+ ≥ 1 and Γ ∈ SO (3). From the same proposition, we concluded that t =

σ2
+−1
σ+
γ1, where159

γ1 is the first column of Γ. From the definition of Σ and U and from (42), one can see that V must be as shown in (43),160

for some ∆ ∈ SO (3). Using these derivations, from the same equation one can see that the aimed rotation is R = ∆.161

A simple analysis of these results could indicate that we should have seven degrees of freedom for the definition of162

the singular value decomposition of E: one for σ2
+; three for Γ; and three for ∆. Nevertheless from Γ, one can see that163

the second and third columns can be defined up to a rotation parameter–see Fig. 2. Formally, the result of E = UEVT
164

using Γ̂, as shown in (44), instead of Γ, yields the same E, concluding the proof of this theorem. �165

3. Conclusions166

In this paper, we prove several properties of the generalized essential matrix E. We derive analytically solutions167

for the Eigen Decomposition of EET and for the Singular Value Decomposition of E. We prove that the former168

only depends on the translation parameters and that it can be defined up to a degree of freedom. We prove that both169

decompositions have only three distinct eigenvalues and singular values and that they depend only on the translation170

9



parameters. In addition, we also study the sufficient conditions for both the eigen decomposition of EET and the171

singular value decomposition of E. We showed that the latter has six degrees of freedom. All of the results derived in172

the paper were numerically tested using Matlab and the results will be available on the author’s web page.173

The goal of this paper is not to estimate E robustly and accurately. Instead, the goal was to derive properties174

enabling a better understanding and the development of new robust and accurate algorithms. As a result of these175

findings, the development of new and more robust algorithms for the estimation of the generalized essential matrix176

may be possible, by using and enforcing the properties that were proven. Current algorithms for the estimation of the177

generalized essential matrix do not explicitly enforce the properties proven in these paper. Therefore these results can178

be used to develop methods that ensure that an estimate for the generalized essential matrix verifies its properties.179
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